åå®å šNASã玹ä»ãã³ã³ãã€ã«ææ€èšŒã§AIã¢ãã«èšèšã匷åãããšã©ãŒãåæžãå¹çãåäžãããAutoMLå®è£ ã§ãã
åå®å šãªãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ïŒèªåæ©æ¢°åŠç¿ãå ç¢æ§ãšä¿¡é Œæ§ã§åäžããã
æ¥éã«é²åãã人工ç¥èœã®ç¶æ³ã«ãããŠããã匷åã§å¹ççããã€ä¿¡é Œæ§ã®é«ãæ©æ¢°åŠç¿ã¢ãã«ãæ±ããæ¢æ±ã¯çµããããšãç¥ããŸããããã®éã®ãã«ãããéèŠãªããã«ããã¯ã¯ãäŒçµ±çã«ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã®èšèšã§ãããããã¯ãæ·±ãå°éç¥èãããªãã®èšç®ãªãœãŒã¹ããããŠãã°ãã°èžè¡çãªçŽæãå¿ èŠãšããè€éãªã¿ã¹ã¯ã§ããèªåæ©æ¢°åŠç¿ïŒAutoMLïŒããããŠããå ·äœçã«ã¯ãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ïŒNASïŒãç»å Žãããã®è€éãªããã»ã¹ãèªååããããšã§AIéçºã®æ°äž»åãçŽæããŠããŸãã
NASã¯ç»æçãªçµæããããããŸãããããã®çŸåšã®å®è£ ã¯ãã°ãã°èª²é¡ã«çŽé¢ããŠããŸããç¡å¹ãŸãã¯æé©ãšã¯èšããªãã¢ãŒããã¯ãã£ã®çæã貎éãªèšç®ãµã€ã¯ã«ã®æµªè²»ããããŠåºç¯ãªçæåŸã®æ€èšŒã®å¿ èŠæ§ã§ããããNASã«ãçŸä»£ã®ãœãããŠã§ã¢ãšã³ãžãã¢ãªã³ã°å®è·µã倧åã«ããŠããã®ãšåãå ç¢æ§ãšäºæž¬å¯èœæ§ãæ³šå ¥ã§ãããã©ãã§ããããïŒãŸãã«ããã«åå®å šãªãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ãç»å Žããåã·ã¹ãã åçããã¥ãŒã©ã«ãããã¯ãŒã¯ã®èªåèšèšã«é©çšããããšã§ãã©ãã€ã ã·ãããæäŸããŸãã
ãã®å æ¬çãªã¬ã€ãã§ã¯ãåå®å šNASãäœãæå³ããã®ãããã®åºæ¬çãªæŠå¿µãã°ããŒãã«AIã³ãã¥ããã£ã«ããããèšãç¥ããªãã¡ãªããããããŠAutoMLå®è£ ã®æªæ¥ãã©ã®ããã«åå®çŸ©ããããšããŠããã®ããæãäžããŠãããŸãããã®ã¢ãããŒãããæåããã¢ãŒããã¯ãã£ã®åŠ¥åœæ§ãã©ã®ããã«ä¿èšŒãããšã©ãŒãå€§å¹ ã«åæžããå¹çãé«ããèªåŸçã«èšèšãããAIã·ã¹ãã ãžã®ä¿¡é Œãããã«é«ããã®ããæ¢ããŸãã
çŸç¶ã®çè§£ïŒAutoMLãšãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢
åå®å šæ§ã®ãã¥ã¢ã³ã¹ãæ¢ãåã«ãAutoMLãšNASã®åºæ¬æŠå¿µãçè§£ããããšãäžå¯æ¬ ã§ãã
èªåæ©æ¢°åŠç¿ïŒAutoMLïŒãšã¯ïŒ
AutoMLã¯ãæ©æ¢°åŠç¿ã®å¿çšã«ããããšã³ãããŒãšã³ãããã»ã¹ãèªååããããã«èšèšãããæè¡ãå æ¬ããå æ¬çãªçšèªã§ãããå°é家以å€ã«ãã¢ã¯ã»ã¹å¯èœã«ããçµéšè±å¯ãªå®è·µè ã®éçºãå éãããŸãããã®ç®æšã¯ãããŒã¿ååŠçãç¹åŸŽéãšã³ãžãã¢ãªã³ã°ãã¢ãã«éžæããã€ããŒãã©ã¡ãŒã¿æé©åããããŠç¹ã«ãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ãªã©ã®ã¿ã¹ã¯ãèªååããããšã§ãã
- AIã®æ°äž»åïŒ AutoMLã¯åå ¥éå£ãäžããå°éã®MLãšã³ãžãã¢ãžã®ã¢ã¯ã»ã¹ã«é¢ããããäžçäžã®äŒæ¥ãç ç©¶è ãé«åºŠãªAIãœãªã¥ãŒã·ã§ã³ã掻çšã§ããããã«ããŸããããã¯ãAI人æããŒã«ãéãããŠããå°åã®ã¹ã¿ãŒãã¢ãããçµç¹ã«ãšã£ãŠç¹ã«åœ±é¿åããããŸãã
- å¹çãšã¹ããŒãïŒ å埩çã§æéã®ãããã¿ã¹ã¯ãèªååããããšã§ãAutoMLã¯äººéã®å°éå®¶ãããé«ã¬ãã«ã®æŠç¥çåé¡ã«éäžã§ããããã«ããäžçäžã®AI補åã®éçºãµã€ã¯ã«ãå€§å¹ ã«å éãããŸãã
- ããã©ãŒãã³ã¹åäžïŒ AutoMLã¢ã«ãŽãªãºã ã¯ãåºå€§ãªãœãªã¥ãŒã·ã§ã³ç©ºéãç¶²çŸ çã«æ¢çŽ¢ããããšã§ã人éãèšèšããåçã®ã¢ãã«ãäžåãã¢ãã«ãçºèŠããããšããããããŸãã
ãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ïŒNASïŒã®å°é
NASã¯AutoMLã®ã³ã¢ã³ã³ããŒãã³ãã§ãããç¹ã«ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã®èšèšã®èªååã«çŠç¹ãåœãŠãŠããŸããæŽå²çã«ã广çãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èšèšã«ã¯ãå°éå®¶ã®çŽæãšçµéšç芳å¯ã«å°ãããåºç¯ãªè©Šè¡é¯èª€ãå«ãŸããŠããŸããããã®ããã»ã¹ã¯ä»¥äžã®éãã§ãã
- æéã®ãããïŒ ã¢ãŒããã¯ãã£ã®ããªãšãŒã·ã§ã³ãæåã§æ¢çŽ¢ããã«ã¯ãæ°é±éãŸãã¯æ°ã¶æãããããšããããŸãã
- ãªãœãŒã¹éçŽåïŒ åã¢ãŒããã¯ãã£ä»®èª¬ã¯ããã¬ãŒãã³ã°ãšè©äŸ¡ãå¿ èŠã§ãã
- å°éå®¶äŸåïŒ æ·±å±€åŠç¿ç ç©¶è ã®çµéšã«å€§ããäŸåããŸãã
NASã¯ãæ€çŽ¢ã¹ããŒã¹ïŒå¯èœãªæäœãšæ¥ç¶ã®ã»ããïŒãæ€çŽ¢æŠç¥ïŒãã®ã¹ããŒã¹ãã©ã®ããã«ããã²ãŒããããïŒãããã³ããã©ãŒãã³ã¹æšå®æŠç¥ïŒåè£ã¢ãŒããã¯ãã£ãã©ã®ããã«è©äŸ¡ãããïŒãå®çŸ©ããããšã«ãã£ãŠããã®æ€çŽ¢ãèªååããããšãç®æããŠããŸããäžè¬çãªæ€çŽ¢æŠç¥ã«ã¯ä»¥äžãå«ãŸããŸãã
- 匷ååŠç¿ïŒRLïŒïŒ ã³ã³ãããŒã©ãŒãããã¯ãŒã¯ãã¢ãŒããã¯ãã£ãææ¡ãããããããã¬ãŒãã³ã°ãšè©äŸ¡ãããã³ã³ãããŒã©ãŒã«å ±é ¬ä¿¡å·ãè¿ããŸãã
- é²åçã¢ã«ãŽãªãºã ïŒEAïŒïŒ ã¢ãŒããã¯ãã£ã¯ãéå£å ã®åäœãšããŠæ±ãããçªç¶å€ç°ã亀差ãªã©ã®æäœãéããŠäžä»£ããšã«é²åããŸãã
- åŸé ããŒã¹ã®æ¹æ³ïŒ æ€çŽ¢ã¹ããŒã¹ã¯åŸ®åå¯èœã«ãªããåŸé éäžæ³ãã¢ãŒããã¯ãã£ãã©ã¡ãŒã¿ãçŽæ¥æé©åã§ããããã«ãªããŸãã
- ã¯ã³ã·ã§ããNASïŒ ãã¹ãŠã®å¯èœãªæäœãå«ãå€§èŠæš¡ãªãã¹ãŒããŒã°ã©ãããæ§ç¯ããã³ãã¬ãŒãã³ã°ããããã®åŸãåå¥ã®åãã¬ãŒãã³ã°ãªãã«ãµããããã¯ãŒã¯ãæœåºãããŸãã
æåããŠããäžæ¹ã§ãåŸæ¥ã®NASã¯æ·±å»ãªèª²é¡ã«çŽé¢ããŠããŸãã
- åºå€§ãªæ€çŽ¢ã¹ããŒã¹ïŒ å¯èœãªã¢ãŒããã¯ãã£ã®æ°ã¯å€©æåŠçã«å€ããªãå¯èœæ§ããããç¶²çŸ çãªæ€çŽ¢ã¯çŸå®çã§ã¯ãããŸããã
- èšç®ã³ã¹ãïŒ ååè£ã¢ãŒããã¯ãã£ã®è©äŸ¡ã«ã¯ããã°ãã°å®å šãªãã¬ãŒãã³ã°ãå¿ èŠã§ãããç¹ã«è€éãªã¿ã¹ã¯ãå€§èŠæš¡ãªããŒã¿ã»ããã§ã¯ãæ³å€ã«é«äŸ¡ã«ãªãå¯èœæ§ããããŸãã
- è匱æ§ãšç¡å¹ãªã¢ãŒããã¯ãã£ïŒ é©åãªå¶çŽããªããšãNASã¢ã«ãŽãªãºã ã¯ãæ§æçã«äžæ£ãèšç®çã«å®è¡äžå¯èœããŸãã¯åã«éè«ççïŒäŸïŒäºææ§ã®ãªãã¬ã€ã€ãŒã®æ¥ç¶ããã£ãŒããã©ã¯ãŒããããã¯ãŒã¯ã§ã®ãµã€ã¯ã«ã®äœæããã³ãœã«æ¬¡å èŠä»¶ã®éåïŒãªã¢ãŒããã¯ãã£ãææ¡ããå¯èœæ§ããããŸãããããã®ç¡å¹ãªã¢ãŒããã¯ãã£ã¯ããã¬ãŒãã³ã°è©Šè¡äžã«è²Žéãªèšç®ãªãœãŒã¹ãç¡é§ã«ããŸãã
ãœãããŠã§ã¢ãšã³ãžãã¢ãªã³ã°ã«ããããåå®å šæ§ããã©ãã€ã
åå®å šNASãçè§£ããããã«ãåŸæ¥ã®ãœãããŠã§ã¢éçºã«ãããåå®å šã®æŠå¿µãç°¡åã«åŸ©ç¿ããŸããããåã·ã¹ãã ã¯ãããã°ã©ãã³ã°èšèªã®ããŸããŸãªæ§é ïŒäŸïŒæŽæ°ãæååãããŒã«å€ããªããžã§ã¯ãïŒã«ãåããå²ãåœãŠãäžé£ã®ã«ãŒã«ã§ããåå®å šæ§ãšã¯ãèšèªãŸãã¯ã·ã¹ãã ãåãšã©ãŒãé²ãããšãã§ããçšåºŠãæããŸãã
JavaãC++ããããã¯éçåãã§ãã«ãŒãåããPythonã®ãããªèšèªã§ã¯ãåå®å šæ§ã«ãããæäœãäºææ§ã®ããåã®ããŒã¿ã«å¯ŸããŠã®ã¿å®è¡ãããããšãä¿èšŒãããŸããããšãã°ãæç€ºçãªå€æãªãã«æååãšæŽæ°ãå ç®ããããšã¯äžè¬çã«ã§ããŸããããã®å©ç¹ã¯ç倧ã§ãã
- æ©æãšã©ãŒæ€åºïŒ åãšã©ãŒã¯ããå®è¡æãïŒå®è¡äžïŒã§ã¯ãªããã³ã³ãã€ã«æãïŒããã°ã©ã å®è¡åïŒã«æ€åºããããããã¯ããã«å¹ççã§ã³ã¹ããããããŸããã
- ä¿¡é Œæ§ã®åäžïŒ ããã°ã©ã ã¯ãåã®äžèŽã«ããäºæããªãã¯ã©ãã·ã¥ãäžæ£ãªåäœã«æ©ãŸãããããšãå°ãªããªããŸãã
- ã³ãŒãã®å¯èªæ§ãšä¿å®æ§ã®åäžïŒ æç€ºçãªåã¯ããã¥ã¡ã³ããšããŠæ©èœããäžçäžã®éçºè ã«ãšã£ãŠã³ãŒãã®çè§£ãšãªãã¡ã¯ã¿ãªã³ã°ã容æã«ãªããŸãã
- ããåªããããŒã«ãµããŒãïŒ IDEã¯ãåªããã³ãŒãè£å®ããªãã¡ã¯ã¿ãªã³ã°ãããã³ãšã©ãŒãã€ã©ã€ããæäŸã§ããŸãã
ããããã¥ãŒã©ã«ãããã¯ãŒã¯ã®èšèšã«é©çšããããšãæ³åããŠãã ãããåã«ä»»æã®ã¬ã€ã€ãŒã®çµã¿åãããæ€çŽ¢ããã®ã§ã¯ãªããææ¡ããããã¹ãŠã®ã¢ãŒããã¯ãã£ããäºåã«å®çŸ©ãããæå¹ãªæ§é ã«ãŒã«ã®ã»ããã«æºæ ããŠããããšã確èªãããã®ã§ãããããåå®å šNASã®æ¬è³ªã§ãã
ã®ã£ãããåããïŒåå®å šNASãšã¯ïŒ
åå®å šãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ã¯ããœãããŠã§ã¢ãšã³ãžãã¢ãªã³ã°ããã®åã·ã¹ãã ã®ååããã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£èšèšã®ãã¡ã€ã³ã«é©çšããŸããããã¯ãæå¹ãªãã¥ãŒã©ã«ãããã¯ãŒã¯æ§é ãå®çŸ©ãããææ³ããŸãã¯ãã¹ããŒãããå®çŸ©ããNASã¢ã«ãŽãªãºã ã«ãã£ãŠææ¡ããããã¹ãŠã®ã¢ãŒããã¯ãã£ããã®ææ³ãå³å¯ã«é å®ããŠããããšã確èªããããšã§ãã
æ¬è³ªçã«ãåå®å šNASã¯ãã³ã¹ãã®ãããæéã®ãããç¡å¹ãªã¢ãã«ã®ãã¬ãŒãã³ã°ããã»ã¹ãé²ãããèšèšæããŸãã¯ãäºåãã¬ãŒãã³ã°æãã®æ®µéã§ã¢ãŒããã¯ãã£ãšã©ãŒãšäžäžèŽãæ€åºããããšãç®æããŠããŸããããã¯ãéäžçãªãã¬ãŒãã³ã°ãéå§ãããåã«ãçæããããã¹ãŠã®ã¢ãŒããã¯ãã£ãæ§é çã«å¥å šã§èšç®çã«å®è¡å¯èœã§ããããšãä¿èšŒããŸãã
ã³ã¢ã³ã³ã»ãããšã¡ã«ããºã
åå®å šNASã®å®è£ ã«ã¯ãããã€ãã®äž»èŠãªã³ã³ããŒãã³ããå«ãŸããŸãã
- ã¢ãŒããã¯ãã£ææ³/ã¹ããŒãå®çŸ©ïŒ ããã¯åå®å
šNASã®æ žå¿ã§ããæå¹ãªãã¥ãŒã©ã«ãããã¯ãŒã¯æ§ç¯ã®ã«ãŒã«ã圢åŒåããããšãå«ã¿ãŸãããããã®ã«ãŒã«ã¯ä»¥äžãå®çŸ©ããŸãïŒ
- èš±å¯ãããæäœ/ã¬ã€ã€ãŒïŒ ã©ã®çš®é¡ã®ã¬ã€ã€ãŒïŒäŸïŒç³ã¿èŸŒã¿ããªã«ã¬ã³ããå šçµåãæŽ»æ§å颿°ïŒãèš±å¯ããããã
- æ¥ç¶ã«ãŒã«ïŒ ã¬ã€ã€ãŒãã©ã®ããã«æ¥ç¶ã§ããããããšãã°ã
Conv2Dã¬ã€ã€ãŒã¯éåžžãå¥ã®Conv2DãŸãã¯Poolingã¬ã€ã€ãŒã«æ¥ç¶ãããŸããããã©ããåãªãã§Denseã¬ã€ã€ãŒã«çŽæ¥æ¥ç¶ãããããšã¯ãããŸãããã¹ãããæ¥ç¶ã«ã¯ãããŒãžã®ããã®ç¹å®ã®ã«ãŒã«ãå¿ èŠã§ãã - ãã³ãœã«äºææ§ïŒ 1ã€ã®ã¬ã€ã€ãŒã®åºå圢ç¶ãšããŒã¿åããåŸç¶ã®ã¬ã€ã€ãŒã®å ¥åèŠä»¶ãšäºææ§ãããããšãä¿èšŒããïŒäŸïŒ3Dãã³ãœã«ãæåŸ ããã¬ã€ã€ãŒã¯2Dãã³ãœã«ãåãå ¥ããªãïŒã
- ã°ã©ãæ§é å¶çŽïŒ ãã£ãŒããã©ã¯ãŒããããã¯ãŒã¯ã§ã®ãµã€ã¯ã«ã®é²æ¢ãå ¥åããåºåãžã®æå¹ãªããŒã¿ãããŒãã¹ã®ä¿èšŒã
- ãã€ããŒãã©ã¡ãŒã¿ç¯å²ïŒ ã¬ã€ã€ãŒåºæã®ãã€ããŒãã©ã¡ãŒã¿ïŒäŸïŒã«ãŒãã«ãµã€ãºããã£ã«ã¿ãŒæ°ãããããã¢ãŠãçïŒã®æå¹ç¯å²ã®å®çŸ©ã
ãã®ææ³ã¯ããã¡ã€ã³åºæèšèªïŒDSLïŒãé¢é£ããå¶çŽãæã€åœ¢åŒçãªã°ã©ã衚çŸããŸãã¯äžé£ã®ããã°ã©ã ã«ããæ€èšŒé¢æ°ã䜿çšããŠè¡šçŸã§ããŸãã
- ãã¥ãŒã©ã«ãããã¯ãŒã¯ã³ã³ããŒãã³ãã«ããããåãïŒ åå®å
šãªã³ã³ããã¹ãã§ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®åã¬ã€ã€ãŒãŸãã¯æäœã¯ãå
¥åãåããšåºåãåããæã€ãšèããããšãã§ããŸãããããã®åã¯ãããŒã¿åïŒfloat32ãªã©ïŒã ãã§ãªããæ¬¡å
ã圢ç¶ãããã«ã¯æå³çãªããããã£ãç¶²çŸ
ããŸããããšãã°ïŒ
Conv2Dã¬ã€ã€ãŒã¯ãå ¥åå(batch_size, height, width, channels)ãšåºåå(batch_size, new_height, new_width, new_channels)ãæã€å ŽåããããŸããFlattenã¬ã€ã€ãŒã¯ã倿¬¡å ãã³ãœã«åã1Dãã³ãœã«åã«å€æããŸããDenseïŒå šçµåïŒã¬ã€ã€ãŒã¯ã1Dãã³ãœã«åãæåŸ ããŸãã
åã·ã¹ãã ã¯ã2ã€ã®ã¬ã€ã€ãŒãæ¥ç¶ããããšãã«ãæåã®ã¬ã€ã€ãŒã®åºååã2çªç®ã®ã¬ã€ã€ãŒã®å ¥ååãšäžèŽããããäºææ§ããããã確èªããŸãã
- éçè§£æãšæ€èšŒïŒ ã³ã¢ã¡ã«ããºã ã¯ãææ¡ãããã¢ãŒããã¯ãã£ã«å¯ŸããŠéçè§£æãå®è¡ããããšã§ããããã¯ããããã¯ãŒã¯ãå®éã«å®è¡ãŸãã¯ãã¬ãŒãã³ã°ããã«ãã®åŠ¥åœæ§ããã§ãã¯ããããšãæå³ããŸããããŒã«ãŸãã¯ã©ã€ãã©ãªã¯ãã¢ãŒããã¯ãã£å®çŸ©ãè§£æããå®çŸ©ãããææ³ã«ãŒã«ãé©çšããŸããã«ãŒã«ãéåãããå Žåãã¢ãŒããã¯ãã£ã¯å³åº§ã«ç¡å¹ãšããŠãã©ã°ãä»ããããç Žæ£ããããä¿®æ£ãããŸããããã¯ãç Žæããã¢ãã«ã®ç¡é§ãªãã¬ãŒãã³ã°ãé²ããŸãã
- æ€çŽ¢ã¢ã«ãŽãªãºã ãšã®çµ±åïŒ NASæ€çŽ¢ã¢ã«ãŽãªãºã ã¯ããããã®åå¶çŽãå°éããããã«èšèšãŸãã¯é©å¿ãããå¿
èŠããããŸããå
šäœã®ä»»æã®æ€çŽ¢ã¹ããŒã¹ãæ¢çŽ¢ããã®ã§ã¯ãªããå®çŸ©ãããåã·ã¹ãã ã«æºæ ããã¢ãŒããã¯ãã£ã®ã¿ãçæãŸãã¯éžæããããã«èªå°ãããŸããããã¯ããã€ãã®æ¹æ³ã§çºçããå¯èœæ§ããããŸãïŒ
- çæå¶çŽïŒ ã¢ã«ãŽãªãºã ã®ãžã§ãã¬ãŒã¿ãŒã¯ãæ¬è³ªçã«æå¹ãªæ§é ã®ã¿ãçæããããã«èšèšãããŠããŸãã
- ãã£ã«ã¿ãªã³ã°/ãã«ãŒãã³ã°ïŒ åè£ã¢ãŒããã¯ãã£ãçæããããã®åŸãåãã§ãã«ãŒãç¡å¹ãªãã®ãè©äŸ¡åã«ãã£ã«ã¿ãªã³ã°ããŸãã
- 修埩ã¡ã«ããºã ïŒ ç¡å¹ãªã¢ãŒããã¯ãã£ãææ¡ãããå Žåãã·ã¹ãã ã¯ãããåå®å šã«ããããã«æå°éã®å€æŽã詊ã¿ãŸãã
åå®å šNASã®å©ç¹
NASã«åå®å šååãæ¡çšããããšã«ãããäžçäžã®ããŸããŸãªç£æ¥ãç ç©¶åéã«æ·±ãé¿ãæ°å€ãã®ã¡ãªãããããããããŸãã
- ãšã©ãŒãšç¡å¹ãªã¢ãŒããã¯ãã£ã®åæžïŒ
- 解決ãããåé¡ïŒ åŸæ¥ã®NASã¯ãäºææ§ã®ãªãã¬ã€ã€ãŒæ¥ç¶ãäžæ£ç¢ºãªãã³ãœã«åœ¢ç¶ããŸãã¯ãã®ä»ã®æ§é äžã®æ¬ é¥ã«ãããã³ã³ãã€ã«æãŸãã¯å®è¡æã«å€±æããã¢ãŒããã¯ãã£ãçæããããšããããããŸãã
- åå®å šãªãœãªã¥ãŒã·ã§ã³ïŒ 峿 Œãªã¢ãŒããã¯ãã£ææ³ã匷å¶ããããšã«ãããåå®å šNASã¯ãçæããããã¹ãŠã®ã¢ãŒããã¯ãã£ãæåããæ§æçããã³æ§é çã«æ£ããããšãä¿èšŒããŸããããã«ããããã¬ãŒãã³ã°ã®å€±æåæ°ãåçã«æžå°ããã¢ãŒããã¯ãã£èšèšã®æ¬ é¥ã®ãããã°ã«ããããã©ã¹ãã¬ãŒã·ã§ã³ãè§£æ¶ãããŸãã
- å
ç¢æ§ãšä¿¡é Œæ§ã®åäžïŒ
- 解決ãããåé¡ïŒ äžéšã®NASããã»ã¹ã®ãã©ãã¯ããã¯ã¹æ§è³ªã¯ãèãã¢ãã«ãèšèšããžãã¯ãäžæçãªã¢ãã«ã«ã€ãªããå¯èœæ§ããããŸãã
- åå®å šãªãœãªã¥ãŒã·ã§ã³ïŒ ã¢ãŒããã¯ãã£ã¯æ©èœçã§ããã ãã§ãªããæ§é çã«ãå¥å šã§ãããåã·ã¹ãã ã«ãšã³ã³ãŒãããããã¹ããã©ã¯ãã£ã¹ã«æºæ ããŠããŸããããã«ããããããã€ã¡ã³ãã§ã®äºæããªãå®è¡æãšã©ãŒã«ééããå¯èœæ§ãäœããããå ç¢ãªã¢ãã«ãçãŸããŸããããã¯ãèªåé転è»ãå»ç蚺æãªã©ã®å®å šã¯ãªãã£ã«ã«ãªã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠéåžžã«éèŠã§ãã
- è§£éå¯èœæ§ãšä¿å®æ§ã®åäžïŒ
- 解決ãããåé¡ïŒ è€éã§èªåçæãããã¢ãŒããã¯ãã£ã¯ã人éã®å°éå®¶ãçè§£ããããã°ããŸãã¯å€æŽããã®ãå°é£ãªå ŽåããããŸãã
- åå®å šãªãœãªã¥ãŒã·ã§ã³ïŒ ã¢ãŒããã¯ãã£ææ³ã®æç€ºçãªå®çŸ©ã¯ãçæãããã¢ãã«ã®æ§é ã®æç¢ºãªããã¥ã¡ã³ããæäŸããŸããããã«ãããè§£éå¯èœæ§ãåäžããäžçäžã®éçºè ã®ã°ããŒãã«ããŒã ãã©ã€ããµã€ã¯ã«å šäœã§ã¢ãã«ãçè§£ããä¿å®ããããšã容æã«ãªããŸãã
- å¹çãšãªãœãŒã¹å©çšã®åäžïŒ
- 解決ãããåé¡ïŒ ç¡å¹ãªã¢ãŒããã¯ãã£ã®ãã¬ãŒãã³ã°ã¯ãããªãã®èšç®ãªãœãŒã¹ïŒGPUãTPUãã¯ã©ãŠãã³ã³ãã¥ãŒãã£ã³ã°ã¯ã¬ãžããïŒãšæéãæµªè²»ããŸãã
- åå®å šãªãœãªã¥ãŒã·ã§ã³ïŒ ç¡å¹ãªæ€çŽ¢ã¹ããŒã¹ã®éšåããã«ãŒãã³ã°ãããã¬ãŒãã³ã°åã«ã¢ãŒããã¯ãã£ãæ€èšŒããããšã«ãããåå®å šNASã¯ãèšç®èœåãã»ãŒå®è¡å¯èœãªã¢ãã«ã®è©äŸ¡ã«ã®ã¿å°å¿µããããšãä¿èšŒããŸããããã«ããã广çãªã¢ãŒããã¯ãã£ãžã®åæãéããªããå€§å¹ ãªã³ã¹ãåæžã«ã€ãªãããŸããããã¯ãäžçäžã®å€æ§ãªäºç®ã§éçšãããŠããçµç¹ã«ãšã£ãŠç¹ã«æçã§ãã
- åå
¥éå£ã®äœäžãšæ°äž»åïŒ
- 解決ãããåé¡ïŒ 髿§èœãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èšèšã«ã¯ãäŒçµ±çã«åºç¯ãªãã¡ã€ã³å°éç¥èãå¿ èŠã§ãããé«åºŠãªAIéçºãå°æ°ã®äººã ã«éå®ããŠããŸããã
- åå®å šãªãœãªã¥ãŒã·ã§ã³ïŒ åå®å šã·ã¹ãã ã«ãã£ãŠæäŸãããã¬ãŒãã¬ãŒã«ã¯ãçµéšã®æµ ããŠãŒã¶ãŒããŸãã¯ç°ãªããšã³ãžãã¢ãªã³ã°åéããã®ãŠãŒã¶ãŒãNASã广çã«æŽ»çšã§ããããã«ããŸãã圌ãã¯ããããããã¥ãŒã©ã«ãããã¯ãŒã¯èšèšã®ãã¥ãŒãªã¹ãã£ãã¯ã«é¢ããæ·±ãç¥èãªãã«ã匷åãªã¢ãŒããã¯ãã£ãã¶ã€ã³ãæ¢çŽ¢ã§ããããŸããŸãªå°éçèæ¯ãå°åã«ãããé«åºŠãªAIã¢ãã«æ§ç¯ãæ°äž»åããŸãã
- ã€ãããŒã·ã§ã³ã®å éïŒ
- 解決ãããåé¡ïŒ æåã§ã®ã¢ãŒããã¯ãã£èšèšãšãããã°ã®å埩ããã»ã¹ã¯ãè¿ éãªå®éšã劚ããå¯èœæ§ããããŸãã
- åå®å šãªãœãªã¥ãŒã·ã§ã³ïŒ ã¢ãŒããã¯ãã£ã®åŠ¥åœæ§ã®æ€èšŒãèªååããããšã§ãç ç©¶è ããšã³ãžãã¢ã¯ãæ°ããã¬ã€ã€ãŒã¿ã€ããæ¥ç¶ãã¿ãŒã³ãããã³æ€çŽ¢æŠç¥ãã¯ããã«è¿ éã«å®éšã§ãã驿°çã§é«æ§èœãªã¢ãŒããã¯ãã£ã®çºèŠãä¿é²ããŸãã
åå®å šAutoMLã·ã¹ãã ã®å°å ¥æŠç¥
AutoMLããã³NASã¯ãŒã¯ãããŒã«åå®å šæ§ãçµ±åããã«ã¯ãæ éãªèšèšãšå®è£ ãå¿ èŠã§ãã以äžã«äžè¬çãªæŠç¥ãšèæ ®äºé ã瀺ããŸãã
1. ã¢ãŒããã¯ãã£å®çŸ©ã®ããã®ãã¡ã€ã³åºæèšèªïŒDSLïŒ
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ãèšè¿°ããããã®å°éèšèªãäœæããããšã¯ãåå®å šæ§ã«ãšã£ãŠéåžžã«å¹æçã§ãããã®DSLã«ãããéçºè ã¯æ§ç¯ãããã¯ãšãã®æ¥ç¶ããç¡å¹ãªæ§æãæ¬è³ªçã«é²ãæ§é åãããæ¹æ³ã§å®çŸ©ã§ããŸãã
- é·æïŒ ææ³ã«å¯Ÿãã匷åãªå¶åŸ¡ãæäŸãããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æŠå¿µã«å¯ŸããŠéåžžã«è¡šçŸåè±ãã§ãããDSLå°çšã«æ§ç¯ããã匷åãªéçè§£æããŒã«ãæå¹ã«ããŸãã
- çæïŒ æ°ããèšèªãåŠã¶å¿ èŠããããå ç¢ãªDSLããŒãµãŒãšããªããŒã¿ãŒã®éçºã¯è€éã«ãªãå¯èœæ§ããããŸãã
- äŸïŒ ã¢ãžã¥ãŒã«ãå®çŸ©ãããšãããæ³åããŠãã ããïŒ
module Classifier (input: Image, output: ProbabilityVector) { conv_block(input, filters=32, kernel=3, activation=relu) -> pool_layer -> conv_block(filters=64, kernel=3, activation=relu) -> flatten -> dense_layer(units=128, activation=relu) -> dense_layer(units=10, activation=softmax) -> output; }DSLã®ããŒãµãŒã¯ã
conv_blockãpool_layerã«äºææ§ã®ãããã³ãœã«ãåºåããåã®ã¬ã€ã€ãŒãç³ã¿èŸŒã¿ã§ãã£ãå Žåãflattenãdense_layerã®åã«æ¥ãããšã匷å¶ããŸãã
2. å¶çŽä»ãã°ã©ãããŒã¹è¡šçŸ
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯æ¬è³ªçã«ã°ã©ãæ§é ã§ãããããããããŒããæäœïŒã¬ã€ã€ãŒïŒã§ãããšããžãããŒã¿ãããŒã§ããèšç®ã°ã©ããšããŠè¡šçŸããããšã¯ãåå®å šæ§ã«ãšã£ãŠèªç¶ãªãã¬ãŒã ã¯ãŒã¯ãæäŸããŸãã
- ã¡ã«ããºã ïŒ åããŒãïŒæäœïŒã¯ãæåŸ ãããå ¥åããã³åºåãã³ãœã«åœ¢ç¶ãããŒã¿åããã®ä»ã®ããããã£ã§æ³šéãä»ããããšãã§ããŸãããšããžã¯ãããã®ãã³ãœã«ã®ãããŒã衚ããŸããæ¬¡ã«ãããªããŒã¿ãŒã¯ã°ã©ãããã©ããŒã¹ãããã¹ãŠãšããžã«ã€ããŠããœãŒã¹ããŒãã®åºååãå®å ããŒãã®å ¥ååãšäžèŽããããšã確èªã§ããŸããã°ã©ãã¢ã«ãŽãªãºã ã¯ãéå·¡åæ§ãªã©ã®ããããã£ããã§ãã¯ããããšãã§ããŸãã
- çµ±åïŒ å€ãã®æ·±å±€åŠç¿ãã¬ãŒã ã¯ãŒã¯ïŒTensorFlowãPyTorchïŒã¯ãå éšã§æ¢ã«ã°ã©ã衚çŸã䜿çšããŠãããããã¯èªç¶ãªæ¡åŒµã§ãã
- äŸïŒ ã°ã©ãæ€èšŒã©ã€ãã©ãªã¯ã2Dç³ã¿èŸŒã¿åºåçšã«èšèšããã
BatchNormã¬ã€ã€ãŒããç°ãªã次å ãæã€Recurrent Neural Networkã¬ã€ã€ãŒã®åŸã«èª€ã£ãŠé 眮ãããŠããªããã確èªã§ããŸãã
3. éçåãã§ãã«ãŒ/ããªããŒã¿ãŒ
ãããã¯ãäºåã«å®çŸ©ãããäžé£ã®ã«ãŒã«ãé©çšããŠæœåšçãªãšã©ãŒãç¹å®ãããã¢ãŒããã¯ãã£å®çŸ©ïŒDSLãPythonã³ãŒãããŸãã¯èšå®ãã¡ã€ã«å ã®ããããïŒããå®è¡ããã«åæããããŒã«ã§ãã
- ã¡ã«ããºã ïŒ ãããã®ããªããŒã¿ãŒã¯ä»¥äžããã§ãã¯ããŸãïŒ
- ãã³ãœã«æ¬¡å
ã®äžèŽïŒ ã¬ã€ã€ãŒAã®åºå圢ç¶ãã¬ã€ã€ãŒBã«ãã£ãŠæ£ããæ¶è²»ã§ããããšã確èªããŸããããšãã°ã
Conv2Dã¬ã€ã€ãŒã(N, H, W, C)ãåºåããå ŽåãåŸç¶ã®Denseã¬ã€ã€ãŒã¯ãã©ããååŸã«(N, H*W*C)å ¥åãå¿ èŠãšããŸãã - ããŒã¿åã®äžè²«æ§ïŒ ãã¹ãŠã®ã¬ã€ã€ãŒã
float32ã§åäœããããåãæ··åããéã«é©åãªãã£ã¹ããè¡ããŸãã - ã¬ã€ã€ãŒäºææ§ïŒ ç¹å®ã®ã¬ã€ã€ãŒã¯ãç¹å®ã®çš®é¡ã®å è¡/åŸç¶ã¬ã€ã€ãŒã«ã®ã¿æ¥ç¶ãããŸãïŒäŸïŒããŒãªã³ã°ãåã蟌ã¿ã¬ã€ã€ãŒã«çŽæ¥æ¥ç¶ããããšã¯ã§ããŸããïŒã
- æå¹ãªãã€ããŒãã©ã¡ãŒã¿ïŒ æå¹ãªç¯å²å ã®ã«ãŒãã«ãµã€ãºãæ£ã®ãã£ã«ã¿ãŒæ°ãªã©ã
- ã°ã©ãã®åŠ¥åœæ§ïŒ èªå·±ã«ãŒããéè€ãšããžããŸãã¯æªåŠçã®å ¥åºåããªãããšãä¿èšŒããŸãã
- ãã³ãœã«æ¬¡å
ã®äžèŽïŒ ã¬ã€ã€ãŒAã®åºå圢ç¶ãã¬ã€ã€ãŒBã«ãã£ãŠæ£ããæ¶è²»ã§ããããšã確èªããŸããããšãã°ã
- çµ±åïŒ ãããã¯ãNASãã€ãã©ã€ã³ã®ããªããã»ãã·ã³ã°ã¹ããããšããŠçµ±åã§ããç¡å¹ãªåè£ããã¬ãŒãã³ã°ãã¥ãŒã«å ¥ãåã«ãã©ã°ãç«ãŠãŸãã
4. æ¢åã®AutoMLãã¬ãŒã ã¯ãŒã¯ãšã®çµ±å
ãŒãããæ§ç¯ããã®ã§ã¯ãªããåå®å šã®ååãAutoKerasãNNIïŒNeural Network IntelligenceïŒããŸãã¯Google Cloud AutoMLã®ãããªæ¢åã®AutoML/NASãã¬ãŒã ã¯ãŒã¯ã«çµã¿èŸŒãããšãã§ããŸãã
- æ¡åŒµãã€ã³ãïŒ å€ãã®ãã¬ãŒã ã¯ãŒã¯ã¯ããŠãŒã¶ãŒãã«ã¹ã¿ã æ€çŽ¢ã¹ããŒã¹ãå®çŸ©ããããè©äŸ¡ããžãã¯ã倿Žãããããããšãèš±å¯ããŸããåå®å
šæ§ã¯ã以äžã«ãã£ãŠå°å
¥ã§ããŸãïŒ
- ã«ã¹ã¿ã æ€çŽ¢ã¹ããŒã¹å®çŸ©ïŒ æ¬è³ªçã«åå®å šãªã¢ãŒããã¯ãã£ãçæããæ¹æ³ã§æ€çŽ¢ã¹ããŒã¹ãèšèšããŸãã
- äºåè©äŸ¡ãã£ã«ã¿ãŒïŒ ååè£ã¢ãŒããã¯ãã£ã®è©äŸ¡ãã€ãã©ã€ã³ã®æåã®ã¹ããŒãžãšããŠæ€èšŒã¹ãããã远å ããŸãã
- ã¬ã€ãä»ãæ€çŽ¢ïŒ æ€çŽ¢ã¢ã«ãŽãªãºã èªäœã倿ŽããŠãåå®å šãªã¢ãŒããã¯ãã£å€æŽãåªå ãŸãã¯ææ¡ããŸãã
- ææ°ã®Pythonåãã³ãã®æŽ»çšïŒ PythonããŒã¹ã®ãã¬ãŒã ã¯ãŒã¯ã®å Žåãã¬ã€ã€ãŒã®å ¥åºåã«å¯ŸããŠæç¢ºãªåãã³ããå®çŸ©ããMyPyã®ãããªããŒã«ã䜿çšãããšãå€ãã®æ§é çãªäžäžèŽãæ©æã«æ€åºã§ããŸãããããã¯ããé«ã¬ãã«ã§ã®ã¢ãŒããã¯ãã£ã®åŠ¥åœæ§ãããã³ãŒãã®æ£ç¢ºæ§ã«å¯Ÿãããã®ã§ãã
å®äŸïŒNASå ã§ã®ãåãã·ã¹ãã ã®å¿çš
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã³ã³ããã¹ãã§ãåããäœãæå³ããã®ãããããŠåå®å šæ§ãããã«ã«ãŒã«ã匷å¶ããããå ·äœçãªäŸã§èª¬æããŸãããã
- ãã³ãœã«åœ¢ç¶ã𿬡å
åïŒ
- ã«ãŒã«ïŒ
Conv2Dã¬ã€ã€ãŒã¯4Dãã³ãœã«(batch, height, width, channels)ãåºåããŸããDenseã¬ã€ã€ãŒã¯2Dãã³ãœã«(batch, features)ãæåŸ ããŸãã - åå®å
šãªåŒ·å¶ïŒNASã¢ã«ãŽãªãºã ã
Conv2DãDenseã«çŽæ¥æ¥ç¶ããããšãææ¡ããå Žåãåã·ã¹ãã ã¯ãšã©ãŒããã©ã°ç«ãŠãã4Dåºåã2Då ¥åã«å€æããããã«äžéFlattenã¬ã€ã€ãŒãå¿ èŠãšããŸãã
- ã«ãŒã«ïŒ
- ããŒã¿ãããŒãšã°ã©ãæ§é åïŒ
- ã«ãŒã«ïŒãã£ãŒããã©ã¯ãŒããããã¯ãŒã¯ã«ã¯ãµã€ã¯ã«ããã£ãŠã¯ãªããŸããã
- åå®å šãªåŒ·å¶ïŒã°ã©ãããªããŒã¿ãŒãšããŠæ©èœããåã·ã¹ãã ã¯ãææ¡ãããã¢ãŒããã¯ãã£ã®ãµã€ã¯ã«ããã§ãã¯ããŸãããµã€ã¯ãªãã¯æ¥ç¶ïŒäŸïŒã¬ã€ã€ãŒAãBã«ãã£ãŒãããBãCã«ãã£ãŒãããCãAã«ãã£ãŒãããã¯ããïŒãæ€åºãããå Žåãç¡å¹ãšèŠãªãããŸãã
- æå³çäºææ§åïŒ
- ã«ãŒã«ïŒç»ååé¡ãã©ã³ããšèªç¶èšèªåŠçãã©ã³ãã¯ãéåžžãæçµåé¡åãããåã«ãé£çµãŸãã¯èŠçŽ ããšã®æäœãä»ããŠåæããã·ãŒã±ã³ã·ã£ã«ã¬ã€ã€ãŒãšããŠçŽæ¥æ¥ç¶ãããããã§ã¯ãããŸããã
- åå®å šãªåŒ·å¶ïŒææ³ã¯ãæ©èœãè«ççã«çµåãããããšãä¿èšŒãããç°ãªããã©ã³ãããã®å ¥åãåŠçããç¹å®ã®ãããŒãžãã¿ã€ããå®çŸ©ã§ããŸãã
- ãªãœãŒã¹å¶çŽåïŒ
- ã«ãŒã«ïŒãšããžããã€ã¹ãžã®ãããã€ã¡ã³ãã®å Žåããã©ã¡ãŒã¿ã®ç·æ°ãŸãã¯æµ®åå°æ°ç¹æŒç®ïŒFLOPïŒã¯ãç¹å®ã®ãããå€ãè¶ ããªãããã«ããå¿ èŠããããŸãã
- åå®å šãªåŒ·å¶ïŒå³å¯ã«ã¯æ§é çãªåã§ã¯ãããŸããããã·ã¹ãã ã¯ææ¡ãããã¢ãŒããã¯ãã£ã®ãããã®ã¡ããªãã¯ãèšç®ããäžçäžã®ç¹å®ã®ãããã€ã¡ã³ãç°å¢ãæé©åããããã«å®çŸ©ãããå¶éãè¶ ããå Žåã«ãã©ã°ãç«ãŠãããšãã§ããŸãã
ã°ããŒãã«ãªåœ±é¿ãšå®è·µçãªå¿çš
åå®å šNASã¯åãªãçè«çãªåŒ·åã§ã¯ãããŸããããã®å®è·µçãªæå³åãã¯åºç¯å²ã«åã³ãäžçäžã®ããŸããŸãªã»ã¯ã¿ãŒã«åœ±é¿ãäžããŠããŸãã
1. ãã«ã¹ã±ã¢ãšå»çç»åïŒ
- å¿çšïŒ å»çç»åïŒäŸïŒXç·ãMRIãCTã¹ãã£ã³ïŒããã®çŸæ£èšºæããŸãã¯å»è¬åéçºã®ããã®å ç¢ãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èšèšã
- 圱é¿ïŒ ãã«ã¹ã±ã¢ã«ãããŠãã¢ãã«ã®ä¿¡é Œæ§ã¯æéèŠã§ããåå®å šNASã¯ãèªåçæããã蚺æã¢ãã«ãæ§é çã«å¥å šã§ããããšãä¿èšŒãã誀蚺ã«ã€ãªããå¯èœæ§ã®ããã¢ãŒããã¯ãã£äžã®æ¬ é¥ã®ãªã¹ã¯ãäœæžããŸããããã«ãããAIæèŒå»çããŒã«ã®ä¿¡é Œãé«ãŸããå é²åœããæ°èåœãŸã§ãAIå°å ¥ãå°éå®¶ã®å¯çšæ§ã®ã®ã£ãããåããããšãã§ããã¯ãªããã¯ãç é¢ã§ã®åºç¯ãªæ¡çšãå¯èœã«ãªããŸãã
2. éèããã³ã¢ã«ãŽãªãºã ååŒïŒ
- å¿çšïŒ åžå Žåæãäžæ£æ€åºããªã¹ã¯è©äŸ¡ã®ããã®äºæž¬ã¢ãã«ã®éçºã
- 圱é¿ïŒ éèã·ã¹ãã ã¯ã極端ãªç²ŸåºŠãšä¿¡é Œæ§ãèŠæ±ããŸããç¡å¹ãªãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã¯ãé倧ãªè²¡åçæå€±ã«ã€ãªããå¯èœæ§ããããŸããåå®å šNASã¯ãåºç€ãšãªãã¢ãã«ãæ§é çã«æ£ãããšããä¿èšŒã®å±€ãæäŸãããã¥ãŒãšãŒã¯ããã³ãã³ãæ±äº¬ããŸãã¯ã ã³ãã€ã®éèæ©é¢ãããã®åºæ¬çãªæŽåæ§ã«å¯Ÿããä¿¡é Œãããé«ãæã£ãŠAIãœãªã¥ãŒã·ã§ã³ããããã€ããããšãå¯èœã«ããŸãã
3. èªåŸã·ã¹ãã ïŒè»äž¡ããããŒã³ïŒïŒ
- å¿çšïŒ èªåé転è»ãç£æ¥çšãããããç¡äººèªç©ºæ©ã«ãããç¥èŠãããã²ãŒã·ã§ã³ãæææ±ºå®ã®ããã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äœæã
- 圱é¿ïŒ èªåŸã·ã¹ãã ã«ãããå®å šæ§ã¯è²ããŸãããã¢ãŒããã¯ãã£ã®æ¬ é¥ã¯å£æ» çãªçµæãããããå¯èœæ§ããããŸããåå®å šæ§ãä¿èšŒããããšã«ããããšã³ãžãã¢ã¯AIã®ãè³ããæ§é çã«å¥å šã§ããããšããã確信ã§ããåºæ¬çãªã¢ãŒããã¯ãã£ã®æ£ç¢ºæ§ã®æ€èšŒãããããã®ããã©ãŒãã³ã¹ãšå«ççèæ ®äºé ã®æ€èšŒã«åŽåãéäžã§ããŸããããã¯ãããŸããŸãªå°åœ¢ãèŠå¶ç°å¢ã«ãããèªåŸæè¡ã®éçºãšå®å šãªãããã€ã¡ã³ããå éããŸãã
4. 補é ããã³å質管çïŒ
- å¿çšïŒ è£œåæ¬ é¥ã®èªåèŠèŠæ€æ»ãæ©æ¢°ã®äºæž¬ã¡ã³ããã³ã¹ãçç£ã©ã€ã³ã®æé©åã
- 圱é¿ïŒ èªåè»ããšã¬ã¯ãããã¯ã¹ãç¹ç¶ãªã©ã®ç£æ¥ã§ã¯ãAIã¢ãã«ã®ããããªã¢ãŒããã¯ãã£äžã®æ¬ é¥ã§ãããå質管çã«ãããã³ã¹ãã®ããããšã©ãŒãçç£åæ¢ã«ã€ãªããå¯èœæ§ããããŸããåå®å šNASã¯ãé«ãéçšåºæºãç¶æããå埩åã®ããAIã·ã¹ãã ãæ§ç¯ããã®ã«åœ¹ç«ã¡ããã€ããããããã ãŸã§ã®å·¥å Žã§äžè²«ãã補åå質ãšéçšå¹çãä¿èšŒããŸãã
5. ç§åŠç ç©¶ããã³çºèŠïŒ
- å¿çšïŒ ç©çåŠãååŠãçç©åŠã«ãããè€éãªç§åŠçåé¡ã®ããã®æ°ãããã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã®çºèŠã®å éã
- 圱é¿ïŒ ç ç©¶è ã¯ããã°ãã°éåžžã«åç Žããªãããã¯ãŒã¯ãã¶ã€ã³ãæ¢æ±ããŸããåå®å šNASã¯åŒ·åãªã¢ã·ã¹ã¿ã³ããšããŠæ©èœãã圌ããèšå€§ãªãªãœãŒã¹ããã¬ãŒãã³ã°ã«ã³ãããããåã«ãå®éšçãªã¢ãŒããã¯ãã£ãè¿ éã«ãããã¿ã€ãåããã³æ€èšŒã§ããããã«ããŸããããã¯ãäžçäžã®ç ç©¶æã倧åŠã§ã®ç§åŠççºèŠã®ããŒã¹ãå éããŸãã
6. éçºéäžå°åã§ã®ã¢ã¯ã»ã·ããªãã£ãšãªãœãŒã¹æé©åïŒ
- å¿çšïŒ æå 端ã®èšç®ãªãœãŒã¹ãžã®ã¢ã¯ã»ã¹ãéãããŠããå°åããŸãã¯é«åºŠã«å°éåãããAI人æããŒã«ãå°ããå°åã§ã®ç ç©¶è ãããžãã¹ã®è²æã
- 圱é¿ïŒ ç¡å¹ãªã¢ãŒããã¯ãã£ã§ã®èšç®ãµã€ã¯ã«ã®ç¡é§ãå€§å¹ ã«åæžããããšã«ãããåå®å šNASã¯é«åºŠãªAIéçºãããçµæžçã«å®è¡å¯èœã«ããŸãããŸãããšã³ãžãã¢ã®èªç¥çè² è·ã軜æžãã圌ããã¢ãŒããã¯ãã£ã®ãã¥ã¢ã³ã¹ãããåé¡å®çŸ©ãšããŒã¿ã«éäžã§ããããã«ããŸãããã®æ°äž»åã¯ãããŒã«ã«AIã€ãããŒã·ã§ã³ãä¿é²ããããã§ãªããã°ã°ããŒãã«AIã¹ããŒãžã§ç«¶äºããã®ã«èŠåŽããå¯èœæ§ã®ããåœã ã®ç¬èªã®èª²é¡ã«å¯ŸåŠããŸãã
課é¡ãšå°æ¥ã®æ¹åæ§
åå®å šNASã¯èª¬åŸåã®ããå©ç¹ãæäŸããŸããããã®å®å šãªå®çŸã¯ç¬èªã®èª²é¡ã䌎ããå°æ¥ã®ç ç©¶ãšéçºã®ããã®ãšããµã€ãã£ã³ã°ãªéãéããŸãã
1. å æ¬çãªåã·ã¹ãã ã®å®çŸ©ïŒ
- 課é¡ïŒ ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã¯ä¿¡ããããªãã»ã©å€æ§ã§ãåžžã«é²åããŠããŸãããã¹ãŠã®æçšãªã¢ãŒããã¯ãã£ãã¿ãŒã³ïŒäŸïŒããŸããŸãªã¹ãããæ¥ç¶ãã¢ãã³ã·ã§ã³ã¡ã«ããºã ãåçã°ã©ãïŒãç¶²çŸ ããã®ã«ååå æ¬çã§ããã驿°ãå¯èœã«ããã®ã«ååæè»ãªåã·ã¹ãã ãå®çŸ©ããããšã¯ã倧ããªããŒãã«ã§ããé床ã«å³æ Œãªã·ã¹ãã ã¯åµé æ§ã劚ããå¯èœæ§ããããé床ã«å¯å®¹ãªã·ã¹ãã ã¯åå®å šæ§ã®ç®çãç¡å¹ã«ããŸãã
- å°æ¥ã®æ¹åæ§ïŒ ãã衚çŸåè±ããªã¢ãŒããã¯ãã£DSLãæ¢åã®æåããã¢ãŒããã¯ãã£ããã®ææ³æšè«ãããã³è€éãªã¢ãžã¥ãŒã«æ§æãæšè«ã§ããéå±€ååã·ã¹ãã ã®ç ç©¶ã
2. æ€èšŒã®èšç®ãªãŒããŒãããïŒ
- 課é¡ïŒ åå®å šNASã¯ç¡å¹ãªã¢ãã«ã®ãã¬ãŒãã³ã°ãåé¿ããããšã§èšç®ãç¯çŽããŸãããéçè§£æèªäœã¯æ°ããèšç®ãªãŒããŒããããå°å ¥ããŸããéåžžã«å€§ããªæ€çŽ¢ã¹ããŒã¹ãéåžžã«è€éãªã¢ãŒããã¯ãã£ææ³ã®å Žåããã®æ€èšŒã¹ããããããã«ããã¯ã«ãªãå¯èœæ§ããããŸãã
- å°æ¥ã®æ¹åæ§ïŒ é«åºŠã«æé©åããã䞊ååãããæ€èšŒã¢ã«ãŽãªãºã ã®éçºãã°ã©ããã©ããŒãµã«ãšå¶çŽãã§ãã¯ã®ããã®ããŒããŠã§ã¢ã¢ã¯ã»ã©ã¬ãŒã·ã§ã³ã®æŽ»çšãããã³æ€èšŒãã§ãã¯ãæ€çŽ¢ã¢ã«ãŽãªãºã ã®çæããã»ã¹ã«ããã«æ·±ãçµ±åããŠãæç€ºçãªçæåŸãã§ãã¯ãªãã§æ¬è³ªçã«åå®å šã«ããããšã
3. æè»æ§ãšå³å¯ãã®ãã©ã³ã¹ïŒ
- 課é¡ïŒ 峿 Œãªåå®å šæ§ã確ä¿ããããšãšãNASã¢ã«ãŽãªãºã ã«çºèŠçã§ãæœåšçã«åç Žãã ããéåžžã«å¹æçãªã¢ãŒããã¯ãã£ãçºèŠããèªç±ãäžããããšã®éã«ã¯ãåºæã®ç·åŒµé¢ä¿ããããŸããæã«ã¯ãäžèŠãåå®å šã§ãªããæ¥ç¶ããå·§åŠãªèšèšã§ãã¬ãŒã¯ã¹ã«ãŒã«ã€ãªããå¯èœæ§ããããŸãã
- å°æ¥ã®æ¹åæ§ïŒ ããœããåã·ã¹ãã ãããæ®µéçåä»ããã®ãããªæŠå¿µãNASã«é©çšããããšãæ€èšããŸããããã§ã¯ãç¹å®ã®ã¢ãŒããã¯ãã£ã«ãŒã«ãç·©åãããããããŒããšã©ãŒã§ã¯ãªãèŠåã䌎ããããããå¯èœæ§ããããŸããããã«ãããåºæ¬çãªæ§é çå®å šæ§ã®ã¬ãã«ãç¶æããªãããããŸãäžè¬çã§ãªããã¶ã€ã³ã®ç®¡çãããæ¢çŽ¢ãå¯èœã«ãªããŸãã
4. é²åããã¢ãŒããã¯ãã£ãšæšæºïŒ
- 課é¡ïŒ 深局åŠç¿åéã¯ãã€ãããã¯ã§ãããæ°ããã¬ã€ã€ãŒã掻æ§å颿°ãæ¥ç¶ãã¿ãŒã³ã宿çã«ç»å ŽããŸããææ°ã®ã¢ãŒããã¯ãã£ã®ã€ãããŒã·ã§ã³ã§åã·ã¹ãã ãææ°ã®ç¶æ ã«ä¿ã€ã«ã¯ãç¶ç¶çãªã¡ã³ããã³ã¹ãšé©å¿ãå¿ èŠã§ãã
- å°æ¥ã®æ¹åæ§ïŒ åã·ã¹ãã ã®é²åã®ããã®ã¡ã¿åŠç¿ã¢ãããŒãã®éçºãããã«ãããã·ã¹ãã ã¯æ°ããã¢ãŒããã¯ãã£ãã¿ãŒã³ãåŠç¿ããæåãã人éèšèšãŸãã¯NASçæã¢ãŒããã¯ãã£ã®ã³ãŒãã¹ããæ°ããåã«ãŒã«ãå°ãåºãããšãã§ããŸããã¢ãŒããã¯ãã£å®çŸ©ãšåææ³ã®ãªãŒãã³æšæºã確ç«ããããšããçžäºéçšæ§ãšã°ããŒãã«ãªé²æ©ãä¿é²ããŸãã
5. æå³çåå®å šæ§å¯Ÿæ§æçåå®å šæ§ïŒ
- 課é¡ïŒ çŸåšã®åå®å šNASã¯äž»ã«æ§æçãªæ£ç¢ºãïŒäŸïŒãã³ãœã«åœ¢ç¶ãã¬ã€ã€ãŒäºææ§ïŒã«çŠç¹ãåœãŠãŠããŸããããããçã®ãæå³çãæ£ç¢ºãïŒäŸïŒãã®ã¢ãŒããã¯ãã£ã¯äžããããã¿ã¹ã¯ã«ãšã£ãŠæ¬åœã«æå³ããããïŒç¹å®ã®ãã€ã¢ã¹ã«æ©ãŸããããããïŒïŒã¯ã¯ããã«è€éã§ããããã°ãã°ãã¬ãŒãã³ã°ãšè©äŸ¡ãå¿ èŠã§ãã
- å°æ¥ã®æ¹åæ§ïŒ ãã¬ããžã°ã©ãããšãã¹ããŒãã·ã¹ãã ãæŽ»çšããŠãã¡ã€ã³åºæã®ã¢ãŒããã¯ãã£ã®ç¥æµããšã³ã³ãŒãããããšã«ãããããé«ã¬ãã«ã®æå³çå¶çŽãåã·ã¹ãã ã«çµ±åããŸããããã«ãããNASãæå¹ãªãããã¯ãŒã¯ãçæããã ãã§ãªããæå³ã®ããèšèšããããããã¯ãŒã¯ãçæããæªæ¥ã«ã€ãªããå¯èœæ§ããããŸãã
å®åå®¶åãã®å®è¡å¯èœãªæŽå¯
åå®å šNASã®åãæŽ»çšããããšèããŠããçµç¹ãå人ã«ã¯ãããã€ãã®ã¢ã¯ã·ã§ã³å¯èœãªæŽå¯ããããŸãã
- ã³ã¢ãã«ãã£ã³ã°ãããã¯ããå§ããŸãããïŒ ãŸããç¹å®ã®ãã¡ã€ã³ïŒäŸïŒããžã§ã³ã®ããã®ç³ã¿èŸŒã¿ãããã¯ãã·ãŒã±ã³ã¹ã®ããã®ãªã«ã¬ã³ãã»ã«ïŒã«é¢é£ããæãäžè¬çã§åºæ¬çãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã¬ã€ã€ãŒãšæ¥ç¶ãã¿ãŒã³ã®åã«ãŒã«ãå®çŸ©ããããšããå§ããŸããè€éãªåã·ã¹ãã ãåŸã ã«æ¡åŒµããŸãã
- æ¢åã®ãã¬ãŒã ã¯ãŒã¯ãšã©ã€ãã©ãªã掻çšããŸãããïŒ åã·ã¹ãã ããŒãããæ§ç¯ããã®ã§ã¯ãªããéžæããAutoMLãŸãã¯æ·±å±€åŠç¿ãã¬ãŒã ã¯ãŒã¯ãã¢ãŒããã¯ãã£æ€èšŒã®ããã®ããã¯ãŸãã¯æ¡åŒµãã€ã³ããæäŸãããã©ãããæ€èšããŠãã ãããDeep Architectã®ãããªã©ã€ãã©ãªãŸãã¯TensorFlow/PyTorchã®ã«ã¹ã¿ã ã°ã©ãæ€èšŒããŒã«ãèµ·ç¹ãšããããšãã§ããŸãã
- ã¢ãŒããã¯ãã£ææ³ãæç¢ºã«ææžåããŸãããïŒ DSLã䜿çšãããããã°ã©ã ã«ãŒã«ã䜿çšãããã«é¢ããããå®çŸ©ãããã¢ãŒããã¯ãã£ææ³ã培åºçã«ææžåãããŠããããšã確èªããŠãã ãããããã¯ãæ°ããããŒã ã¡ã³ããŒããªã³ããŒãã£ã³ã°ãããããžã§ã¯ãå šäœã§äžè²«æ§ã確ä¿ãã倿§ãªããŒã éã®å調ãä¿é²ããããã«éèŠã§ãã
- CI/CDãã€ãã©ã€ã³ã§æ©æã«æ€èšŒãçµ±åããŸãããïŒ ã¢ãŒããã¯ãã£æ€èšŒãä»ã®ã³ãŒãå質ãã§ãã¯ãšåæ§ã«æ±ããŸããåå®å šNASããªããŒã¿ãŒãç¶ç¶çã€ã³ãã°ã¬ãŒã·ã§ã³/ç¶ç¶çãããã€ã¡ã³ãïŒCI/CDïŒãã€ãã©ã€ã³ã«çµ±åããŸããããã«ãããèªåçæãããããŸãã¯æåã§å€æŽãããã¢ãŒããã¯ãã£ãããã¬ãŒãã³ã°ã«ããªãã®èšç®ãªãœãŒã¹ãæ¶è²»ããåã«æ€èšŒãããããšãä¿èšŒãããŸãã
- ãªãœãŒã¹æé©åãåªå ããŸãããïŒ èšç®ãªãœãŒã¹ãéãããŠããç°å¢ïŒå€ãã®æ°èåžå Žãå°èŠæš¡ãªç 究宀ã§äžè¬çïŒã§ã¯ãç¡å¹ãªã¢ãã«ãã¬ãŒãã³ã°ãåé¿ããããšã«ãã峿ã®ã³ã¹ãåæžã¯å€§å¹ ãªãã®ã§ããåå®å šNASãåªå ããŠãAIéçºãžã®æè³åççãæå€§åããŠãã ããã
- å ç¢ãªAIãšã³ãžãã¢ãªã³ã°ã®æåãè²ã¿ãŸãããïŒ ããŒã ã«ãåæã®ã¢ãŒããã¯ãã£æ€çŽ¢ãã§ãŒãºãããæ£ç¢ºããä¿¡é Œæ§ãä¿å®æ§ãéèŠããŠããšã³ãžãã¢ãªã³ã°ã®èãæ¹ã§ãã¥ãŒã©ã«ãããã¯ãŒã¯èšèšãèããããããšã奚å±ããŸããåå®å šæ§ã¯ããã®æåãè²æããããã®åŒ·åãªããŒã«ãšãªãåŸãŸãã
çµè«
èªåæ©æ¢°åŠç¿ãšãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ã®æ ã¯ãAIã«ãããä¿¡ããããªãã»ã©ã®é²æ©ã®èšŒã§ãããããããããã®ã·ã¹ãã ãè€éããšèªåŸæ§ãå¢ãã«ã€ããŠãå ç¢ã§ä¿¡é Œæ§ãé«ãå¹ççãªéçšãžã®å¿ èŠæ§ãæéèŠã«ãªããŸããåå®å šãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ã¯ãçŸä»£ã®ãœãããŠã§ã¢ãšã³ãžãã¢ãªã³ã°ååã®äºæž¬å¯èœæ§ãšãšã©ãŒé²æ¢æ©èœããèªåèšèšã®åã«æ³šå ¥ãããéèŠãªé²åã¹ããããšããŠç»å ŽããŸãã
èšèšæã«ã¢ãŒããã¯ãã£ã®åŠ¥åœæ§ã匷å¶ããããšã«ãããåå®å šNASã¯ãèšç®ãªãœãŒã¹ã®ç¡é§ãåçã«åæžãã髿§èœã¢ãã«ã®çºèŠãå éããäžçäžã®éèŠãªã°ããŒãã«ã»ã¯ã¿ãŒã«å±éãããAIã·ã¹ãã ã®ä¿¡é Œæ§ãåäžãããŸããããã¯é«åºŠãªAIã¢ãã«æ§ç¯ãžã®ã¢ã¯ã»ã¹ãæ°äž»åããããå¹ åºãå®è·µè ãçµç¹ããä¿¡é Œæ§ãé«ããäžççã«åœ±é¿åã®ããæ©æ¢°åŠç¿ãœãªã¥ãŒã·ã§ã³ãéçºã§ããããã«ããŸãã
å°æ¥ãèŠæ®ãããšããã¥ãŒã©ã«ã¢ãŒããã¯ãã£ã®åã·ã¹ãã ãæ€çŽ¢ã¢ã«ãŽãªãºã ã®é²æ©ãããã³èšç®å¹çã®ç¶ç¶çãªæŽç·Žã¯ãééããªãAIã€ãããŒã·ã§ã³ã®æ°ããããã³ãã£ã¢ãåãéãã§ããããåå®å šNASãæ¡çšããããšã¯ãåãªãæé©åã§ã¯ãããŸãããããã¯ã次äžä»£ã®ã€ã³ããªãžã§ã³ãã§ä¿¡é Œæ§ãé«ããäžççã«åœ±é¿åã®ããAIã¢ããªã±ãŒã·ã§ã³ãæ§ç¯ããããã®æŠç¥çå¿ é äºé ã§ãã
å ç¢ã§èªåèšèšãããAIã®æä»£ãå°æ¥ããåå®å šNASããã®å é ã«ç«ã£ãŠããŸãã