PythonãæŽ»çšããŠã倿§ãªåœéåžå Žã«ãããåšåº«ç®¡çãæé©åããã³ã¹ããåæžãããµãã©ã€ãã§ãŒã³ã®å¹çãåäžãããŸããå®è·µçãªäŸãšå ·äœçãªæŽå¯ãæ¢ããŸãã
ãµãã©ã€ãã§ãŒã³ã«ãããPythonïŒã°ããŒãã«åžå Žåãåšåº«æé©å
çžäºã«ç¹ããåãçŸä»£ã«ãããŠãå ç¢ã§å¹ççãªãµãã©ã€ãã§ãŒã³ã¯äŒæ¥ãæåããããã«äžå¯æ¬ ã§ããç¹ã«å€æ§ãªåœéåžå Žã«ããã广çãªåšåº«ç®¡çã¯ãè€éãªèª²é¡ã§ãããã®ããã°èšäºã§ã¯ãå€çšéã§åŒ·åãªããã°ã©ãã³ã°èšèªã§ããPythonãã©ã®ããã«æŽ»çšããŠåšåº«ç®¡çãæé©åããã³ã¹ããåæžãããµãã©ã€ãã§ãŒã³å šäœã®å¹çãåäžããããã«ã€ããŠæãäžããŸãã
åšåº«æé©åã®éèŠæ§
åšåº«æé©åãšã¯ãé©åãªéã®åšåº«ããé©åãªå Žæã«ãé©åãªã¿ã€ãã³ã°ã§ãå¯èœãªéãäœãã³ã¹ãã§ç¢ºä¿ããæè¡ãšç§åŠã§ããããã«ã¯ãåšåº«åãïŒåšåº«äžè¶³ã«ãã販売æ©äŒã®æå€±ïŒãšéå°åšåº«ïŒè³æ¬ã®åºå®åãä¿ç®¡ã³ã¹ãã®å¢å ãé³è åã®ãªã¹ã¯ïŒã®ãªã¹ã¯ã®ãã©ã³ã¹ãåãããšãå«ãŸããŸããã°ããŒãã«ãªç¶æ³ã§ã¯ã次ã®ãããªèŠå ã«ãã£ãŠèª²é¡ãããã«å¢å¹ ãããŸãã
- ãªãŒãã¿ã€ã ã®é·æåïŒèŒžéããã³é颿ç¶ãã®ããã
- çºæ¿å€åïŒè³Œè²·åãšåçæ§ã«åœ±é¿ãäžããã
- 倿§ãªèŠå¶ïŒèŒžåºå ¥èŠä»¶ã®çžéã
- å°æ¿åŠçãªäžå®å®æ§ïŒãµãã©ã€ãã§ãŒã³ã®æ··ä¹±ãåŒãèµ·ããã
- éèŠã®å€åæ§ïŒæåçãªãã¬ã³ããå£ç¯çãªå€åãããã³ç°ãªãå°åã®çµæžç¶æ³ã«ãã£ãŠå·Šå³ãããã
广çãªåšåº«æé©åã¯ãããã®ãªã¹ã¯ã軜æžããäŒæ¥ã以äžã®ããšãå¯èœã«ããŸãã
- ä¿ç®¡ã³ã¹ãã®åæžïŒä¿ç®¡ãä¿éºãé³è åã®è²»çšãæå°éã«æããã
- 顧客ãµãŒãã¹ã®åäžïŒæ³šæãè¿ éãã€æ£ç¢ºã«å±¥è¡ããã
- åçæ§ã®åäžïŒè³æ¬é åãæé©åããç¡é§ãæå°éã«æããã
- ãµãã©ã€ãã§ãŒã³ã®ã¬ãžãªãšã³ã¹åŒ·åïŒæ··ä¹±ã«ãã广çã«é©å¿ããã
åšåº«æé©åã«ãããPythonã®åœ¹å²
Pythonã®æè»æ§ãè±å¯ãªã©ã€ãã©ãªããããŠäœ¿ããããã¯ãåšåº«æé©åã«ãšã£ãŠçæ³çãªããŒã«ãšãªã£ãŠããŸããPythonãã©ã®ããã«é©çšã§ããããèŠãŠã¿ãŸãããã
1. ããŒã¿ååŸãšç®¡ç
广çãªåšåº«æé©åã®åºç€ã¯ãä¿¡é Œæ§ã®é«ãããŒã¿ã§ããPythonã¯ä»¥äžã®ããã«äœ¿çšã§ããŸãã
- 倿§ãªããŒã¿ãœãŒã¹ãžã®æ¥ç¶ïŒERPã·ã¹ãã ïŒäŸïŒSAPãOracleïŒãããŒã¿ããŒã¹ïŒäŸïŒMySQLãPostgreSQLïŒãã¹ãã¬ããã·ãŒãïŒäŸïŒCSVãExcelïŒãããã³ã¯ã©ãŠããã©ãããã©ãŒã ïŒäŸïŒAWSãAzureãGoogle CloudïŒãªã©ã
- ããŒã¿æœåºãšå€æã®èªååïŒ
pandasã®ãããªã©ã€ãã©ãªã䜿çšããŠãããŒã¿ã®ã¯ãªãŒãã³ã°ãæäœããã©ãŒããããè¡ããŸããããã«ã¯ãæ¬ æããŒã¿ã®åŠçããšã©ãŒã®ä¿®æ£ãããŒã¿åã®å€æãå«ãŸããŸãã - ããŒã¿ã®å¹ççãªä¿åãšç®¡çïŒPythonã¯ãåæã«é©ããæ§é åããã圢åŒã§ããŒã¿ãããŒãããããã«äœ¿çšããããããŒã¿ããŒã¹ãšããåãããããã«äœ¿çšãããã§ããŸãã
äŸïŒåç±³ããšãŒããããã¢ãžã¢ã§äºæ¥ãå±éããã°ããŒãã«å°å£²æ¥è
ãæ³åããŠã¿ãŠãã ãããPythonã¹ã¯ãªããã䜿çšãããšãããŒã¿ã®ç©ççãªä¿åå Žæã«é¢ããããå°å£²æ¥è
ã®äžå¿çãªERPã·ã¹ãã ãã販売ããŒã¿ãåšåº«ã¬ãã«ãåºè·æ
å ±ãååŸã§ããŸãããã®åŸãpandasã©ã€ãã©ãªãçããŒã¿ãåæçšã®äžè²«ãã圢åŒã«å€æããŸãã
2. éèŠäºæž¬
æ£ç¢ºãªéèŠäºæž¬ã¯ãåšåº«æé©åã®èŠã§ããPythonã¯ããã®ç®çã®ããã«æ§ã ãªã©ã€ãã©ãªãšææ³ãæäŸããŸãã
- æç³»ååæïŒ
statsmodelsãscikit-learnãªã©ã®ã©ã€ãã©ãªã䜿çšããŠãéå»ã®è²©å£²ããŒã¿ãåæãããã¿ãŒã³ããã¬ã³ããå£ç¯æ§ãç¹å®ããŸãã - ååž°åæïŒéèŠãšãäŸ¡æ Œãããã¢ãŒã·ã§ã³ãããŒã±ãã£ã³ã°è²»çšãçµæžææšïŒäŸïŒGDPæé·çãæ¶è²»è ä¿¡é ŒæïŒãªã©ã®ä»ã®èŠå ãšã®é¢ä¿ãç¹å®ããŸãã
- æ©æ¢°åŠç¿ïŒARIMAãææ°å¹³æ»åãªã©ã®ã¢ãã«ãããµããŒããã¯ã¿ãŒååž°ïŒSVRïŒããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒRNNïŒãªã©ã®ããé«åºŠãªææ³ãè€éãªäºæž¬ã·ããªãªã«é©çšããŸãã
scikit-learnãTensorFlowã®ãããªã©ã€ãã©ãªãããã§éåžžã«åœ¹ç«ã¡ãŸãã - å€éšèŠå ã®èæ ®ïŒæ°è±¡äºå ±ããœãŒã·ã£ã«ã¡ãã£ã¢ã®ææ ãçµæžäºæž¬ãªã©ã®å€éšããŒã¿ãœãŒã¹ãçµ±åããŠãäºæž¬ç²ŸåºŠãåäžãããŸãã
äŸïŒè€æ°ã®åœã§äºæ¥ãå±éãã飲æäŒç€Ÿã¯ãPythonã䜿çšããŠéèŠäºæž¬ã¢ãã«ãæ§ç¯ã§ããŸãããã®ã¢ãã«ã¯ãéå»ã®è²©å£²ããŒã¿ãå£ç¯ãã¿ãŒã³ïŒäŸïŒå€æã®è²©å£²å¢ïŒãããã¢ãŒã·ã§ã³ã€ãã³ãïŒäŸïŒå²åŒïŒãããã«ã¯å€©æ°äºå ±ïŒäŸïŒæãæ°åãæž 涌飲æã®éèŠå¢ã«ã€ãªããïŒãªã©ãèæ ®ãããããããŸããããã®åŸãã¢ãã«ã¯å補åãååœã«ãããå°æ¥ã®éèŠãäºæž¬ããåšåº«èšç»ãžã®å ¥åãšããŠæäŸããŸãã
3. åšåº«èšç»ãšæé©åã¢ãã«
éèŠãäºæž¬ãããããPythonã䜿çšããŠåšåº«èšç»ã¢ãã«ãå®è£ ããæé©ãªçºæ³šéãçºæ³šç¹ãå®å šåšåº«ã¬ãã«ã決å®ã§ããŸããäžè¬çãªã¢ãã«ã«ã¯ä»¥äžãå«ãŸããŸãã
- çµæžçºæ³šéïŒEOQïŒïŒç·åšåº«ã³ã¹ããæå°éã«æããæé©ãªçºæ³šéãæ±ºå®ããå€å žçãªã¢ãã«ã
- çºæ³šç¹ïŒROPïŒïŒåšåº«åããé¿ããããã«æ°ããªæ³šæãçºæ³šãã¹ãåšåº«ã¬ãã«ã
- å®å šåšåº«ïŒéèŠã®äžç¢ºå®æ§ããªãŒãã¿ã€ã ã®å€åããä¿è·ããããã«ä¿æãããç·©è¡åšåº«ã
- ã·ãã¥ã¬ãŒã·ã§ã³ïŒã¢ã³ãã«ã«ãã·ãã¥ã¬ãŒã·ã§ã³ã䜿çšããŠãæ§ã ãªã·ããªãªïŒäŸïŒç°ãªããªãŒãã¿ã€ã ãéèŠå€åïŒã«ãããåšåº«ã¬ãã«ãã¢ãã«åããæé©ãªåšåº«ããªã·ãŒã決å®ããŸãã
SciPyãPuLPïŒç·åœ¢èšç»æ³çšïŒãªã©ã®Pythonã©ã€ãã©ãªã¯ãæé©åã¢ãã«ã®æ§ç¯ãšè§£æ±ºã«åœ¹ç«ã¡ãŸããSimPyã®ãããªã©ã€ãã©ãªã¯ãåšåº«ã·ã¹ãã ãã·ãã¥ã¬ãŒãããããã«äœ¿çšã§ããŸãããããã¯ãä¿ç®¡ã³ã¹ããçºæ³šã³ã¹ãããµãŒãã¹ã¬ãã«ãªã©ã®èŠå ãèæ
®ããŠãæé©ãªåšåº«ã¬ãã«ãçºæ³šé »åºŠãå®å
šåšåº«ã¬ãã«ãèŠã€ããããã«äœ¿çšã§ããŸãã
äŸïŒã°ããŒãã«ãªæµéãæã€è£œè¬äŒç€Ÿã¯ãPythonã¹ã¯ãªããã䜿çšããŠãç°ãªããµãã©ã€ã€ãŒããã®ãªãŒãã¿ã€ã ãç°ãªãå°åã§ã®éèŠå€åãããã³äŒç€Ÿã®ç®æšãµãŒãã¹ã¬ãã«ïŒäŸïŒ95%ã®æ³šæå è¶³çïŒãèæ ®ããŠãå補åã®EOQãšROPãèšç®ã§ããŸããããã«ãããäžçäžã®æ£è ãå¿ èŠãªãšãã«é©åãªéã®å»è¬åãå ¥æã§ããããã«ãªããŸãã
4. èªååãšã¬ããŒãäœæ
Pythonã¯ãåšåº«æé©åã«é¢ããå€ãã®ã¿ã¹ã¯ãèªååããæéãç¯çŽãããšã©ãŒã®ãªã¹ã¯ã軜æžã§ããŸãã
- èªåããŒã¿æŽæ°ïŒæ§ã ãªãœãŒã¹ããããŒã¿ãèªåçã«ååŸãæŽæ°ããã¹ã¯ãªãããå®è¡ã
- èªåã¢ãã«å®è¡ïŒéèŠäºæž¬ããã³åšåº«èšç»ã¢ãã«ã宿çã«ïŒäŸïŒæ¯æ¥ãæ¯é±ãæ¯æïŒå®è¡ããã¹ã¯ãªãããã¹ã±ãžã¥ãŒã«èšå®ã
- ã¬ããŒãçæïŒåšåº«ã¬ãã«ãäºæž¬ç²ŸåºŠãäž»èŠæ¥çžŸè©äŸ¡ææšïŒKPIïŒãèŠèŠåããããã®ããã·ã¥ããŒããšã¬ããŒããäœæã
matplotlibãplotlyã®ãããªã©ã€ãã©ãªã¯ããŒã¿èŠèŠåã«åªããŠããŸãã - ã¢ã©ãŒããšéç¥ïŒåšåº«ã¬ãã«ãçºæ³šç¹ãäžåã£ãå Žåããäºæž¬ãå®éã®å£²äžãã倧ããä¹é¢ããå Žåã«ãèªåã¢ã©ãŒããéä¿¡ã
äŸïŒäžççãªé»åæ©åšã¡ãŒã«ãŒã¯ãPythonã䜿çšããŠãå補åããã³äžçäžã®åå庫ã«ããããªã¢ã«ã¿ã€ã ã®åšåº«ã¬ãã«ãäºæž¬ç²ŸåºŠãäž»èŠæ¥çžŸè©äŸ¡ææšïŒKPIïŒã衚瀺ããããã·ã¥ããŒããäœæã§ããŸãããã®ããã·ã¥ããŒãã¯ææ°ããŒã¿ã§èªåçã«æŽæ°ãããåšåº«ã¬ãã«ãçºæ³šç¹ãäžåã£ãå Žåã«ã¯ãé©åãªæ åœè ã«ã¢ã©ãŒããéä¿¡ã§ããŸãã
5. ãµãã©ã€ãã§ãŒã³ãããã¯ãŒã¯æé©å
åå¥ã®åšåº«ç®¡çãè¶ ããŠãPythonã¯ãµãã©ã€ãã§ãŒã³ãããã¯ãŒã¯å šäœã®æé©åã«äœ¿çšã§ããŸãã
- ãããã¯ãŒã¯èšèšïŒå庫ãé éã»ã³ã¿ãŒã補é å·¥å Žã®å Žæãåæãã茞éã³ã¹ããšãªãŒãã¿ã€ã ãæå°éã«æããã
- 茞éæé©åïŒæãè²»çšå¯Ÿå¹æã®é«ã茞éã¢ãŒãïŒäŸïŒæµ·äžè²šç©ãèªç©ºè²šç©ããã©ãã¯èŒžéïŒãšã«ãŒããéžæããã
- ãµãã©ã€ã€ãŒéžå®ïŒã³ã¹ãããªãŒãã¿ã€ã ãä¿¡é Œæ§ãªã©ã®èŠå ã«åºã¥ããŠãµãã©ã€ã€ãŒãè©äŸ¡ã»éžå®ããã
äŸïŒã°ããŒãã«ãªèª¿éãšæµéãæã€å€§æã¢ãã¬ã«äŒæ¥ã¯ãPythonã䜿çšããŠæ§ã ãªãµãã©ã€ãã§ãŒã³ãããã¯ãŒã¯æ§æãã·ãã¥ã¬ãŒãã§ããŸãããã®ã¢ãã«ã¯ã茞éã³ã¹ãããªãŒãã¿ã€ã ãå庫容éãªã©ã®èŠå ãè©äŸ¡ããè€æ°ã®åžå Žã§ã³ã¹ããæå°éã«æãã顧客ãµãŒãã¹ãæå€§åããããã®å庫ãšé éã»ã³ã¿ãŒã®æé©ãªå Žæãæ±ºå®ããã®ã«åœ¹ç«ã¡ãŸããPythonã¯ãŸããçæã³ã¹ãã茞éæéãé颿ç¶ããªã©ã®èŠå ãèæ ®ããŠæé©ãªé éã«ãŒããæ±ºå®ããããšã«ãããååã®èŒžéæé©åãæ¯æŽããããšãã§ããŸãã
åšåº«æé©åã®ããã®å®è·µçãªPythonäŸ
ããã§ã¯ãPythonãç¹å®ã®åšåº«æé©åã¿ã¹ã¯ã«ã©ã®ããã«äœ¿çšã§ãããã瀺ãããã€ãã®ã³ãŒãã¹ããããã玹ä»ããŸããããã¯ãã¢ã³ã¹ãã¬ãŒã·ã§ã³ç®çã§ãããé¢é£ã©ã€ãã©ãªã®ã€ã³ã¹ããŒã«ãå¿ èŠã§ããå ·äœçãªå®è£ ã¯ãåã ã®ããžãã¹ããŒãºãšäœ¿çšãããç¹å®ã®ããŒã¿åœ¢åŒã«åãããŠèª¿æŽããå¿ èŠããããŸãã
äŸ1ïŒçµæžçºæ³šéïŒEOQïŒã®èšç®
import math
def calculate_eoq(annual_demand, ordering_cost, holding_cost_per_unit):
"""Calculates the Economic Order Quantity (EOQ)."""
eoq = math.sqrt((2 * annual_demand * ordering_cost) / holding_cost_per_unit)
return eoq
# Example Usage:
annual_demand = 1000 # Units
ordering_cost = 50 # USD
holding_cost_per_unit = 2 # USD
eoq = calculate_eoq(annual_demand, ordering_cost, holding_cost_per_unit)
print(f"The Economic Order Quantity is: {eoq:.2f} units")
説æïŒãã®Pythonã³ãŒãã¯ã幎ééèŠãçºæ³šã³ã¹ããããã³1åäœãããã®ä¿ç®¡ã³ã¹ããå
¥åãšããŠåãåã颿°calculate_eoqãå®çŸ©ããŠããŸããEOQåŒãé©çšããŠæé©ãªçºæ³šéãæ±ºå®ããŸãããã®äŸã§ã¯ã幎ééèŠã1000åäœãçºæ³šã³ã¹ãã50ãã«ã1åäœãããã®ä¿ç®¡ã³ã¹ãã2ãã«ã®è£œåã®EOQãèšç®ããŠããŸãã
äŸ2ïŒstatsmodelsã䜿çšããã·ã³ãã«ãªæç³»åäºæž¬
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
# Sample sales data (replace with your actual data)
data = {
'Month': pd.to_datetime(['2023-01-01', '2023-02-01', '2023-03-01', '2023-04-01', '2023-05-01']),
'Sales': [100, 120, 110, 130, 140]
}
df = pd.DataFrame(data)
df.set_index('Month', inplace=True)
# Fit an ARIMA model (example parameters: p=1, d=1, q=1)
model = ARIMA(df['Sales'], order=(1, 1, 1))
model_fit = model.fit()
# Make predictions for the next 2 months
predictions = model_fit.predict(start=len(df), end=len(df) + 1)
print(predictions)
説æïŒãã®ã³ãŒãã¹ããããã¯ãstatsmodelsã©ã€ãã©ãªã®ARIMAã¢ãã«ã䜿çšããéåžžã«åºæ¬çãªæç³»åäºæž¬ã瀺ããŠããŸãããŸããããã€ãã®ãµã³ãã«è²©å£²ããŒã¿ãå®çŸ©ããŸããæ¬¡ã«ãARIMAã¢ãã«ã販売ããŒã¿ã«ïŒp, d, qïŒã®é åºãã©ã¡ãŒã¿ã§é©åãããŸããæåŸã«ãé©åããã¢ãã«ã䜿çšããŠã次ã®2ãæéã®å£²äžãäºæž¬ããŸããARIMAã¢ãã«ã®å®éã®ããã©ãŒãã³ã¹ã¯ããã©ã¡ãŒã¿ïŒp, d, qïŒã®éžæã«äŸåããŸããé©åãªãã©ã¡ãŒã¿ãéžæããã«ã¯ãè©³çŽ°ãªæç³»ååæãå¿
èŠã§ãã
äŸ3ïŒPandasã䜿çšããCSVããã®ããŒã¿ããŒã
import pandas as pd
# Load data from CSV
try:
df = pd.read_csv('inventory_data.csv') # Replace with your file path
print(df.head())
except FileNotFoundError:
print("Error: File 'inventory_data.csv' not found.")
except Exception as e:
print(f"An error occurred: {e}")
# Example data manipulation (e.g., calculating reorder point)
if 'demand' in df.columns and 'lead_time' in df.columns and 'safety_stock' in df.columns:
df['reorder_point'] = df['demand'] * df['lead_time'] + df['safety_stock']
print(df[['reorder_point']].head())
説æïŒãã®ã³ãŒãã¯pandasã©ã€ãã©ãªã䜿çšããŠã`inventory_data.csv`ãšããååã®CSVãã¡ã€ã«ããããŒã¿ãèªã¿èŸŒã¿ãŸãããšã©ãŒåŠçïŒãã¡ã€ã«ã®ååšç¢ºèªãšæœåšçãªãšã©ãŒã®åŠçïŒã瀺ããåºæ¬çãªããŒã¿æäœïŒçºæ³šç¹ã®èšç®ïŒã®äŸãæããŠããŸããèšç®ãæ©èœããããã«ã¯ãç¹å®ã®åïŒäŸïŒdemandãlead_timeãsafety_stockïŒãCSVãã¡ã€ã«ã«ååšããå¿
èŠããããŸããããã¯ãåæãéå§ããåã«ããŒã¿ãæºåããããšã®éèŠæ§ã匷調ããŠããŸãã
課é¡ãšèæ ®äºé
Pythonã¯åšåº«æé©åã®ããã®åŒ·åãªããŒã«ãæäŸããŸãããèæ ®ãã¹ã課é¡ãååšããŸãã
- ããŒã¿å質ïŒçµæã®ç²ŸåºŠã¯å ¥åããŒã¿ã®å質ã«äŸåããŸããããŒã¿ã¯ãªãŒãã³ã°ãšæ€èšŒã¯äžå¯æ¬ ãªã¹ãããã§ãã
- ã¢ãã«ã®è€éãïŒé©åãªã¢ãã«ã®éžæãšãã®ãã©ã¡ãŒã¿èª¿æŽã¯è€éãªå ŽåããããŸããã¢ãã«ã®è€éããšè§£éå¯èœæ§ã®ãã©ã³ã¹ãåãããšãéèŠã§ãã
- æ¢åã·ã¹ãã ãšã®çµ±åïŒPythonã¹ã¯ãªãããæ¢åã®ERPã·ã¹ãã ãããŒã¿ããŒã¹ããã®ä»ã®ãœãããŠã§ã¢ãšçµ±åããããšã¯é£ããå ŽåããããŸããAPIçµ±åãšããŒã¿è»¢éæ¹æ³ãæ€èšããŠãã ããã
- ã¹ã±ãŒã©ããªãã£ïŒããŒã¿éãå¢å ãããšãã¹ã¯ãªããã®åŠçæéãå¢å ããå¯èœæ§ããããŸããã³ãŒãã®æé©åãšå¹ççãªããŒã¿ã¹ãã¬ãŒãžããã³åŠçæè¡ã®å©çšãéèŠã§ãã
- ã¹ãã«ã®ã£ããïŒPythonããŒã¹ã®åšåº«æé©åãœãªã¥ãŒã·ã§ã³ãæ§ç¯ããã³ç¶æããã«ã¯ãããŒã¿ãµã€ãšã³ã¹ãšããã°ã©ãã³ã°ã®å°éç¥èãå¿ èŠã§ããäŒæ¥ã¯æ¢åã®ã¹ã¿ãããèšç·Žããããæ°ãã人æãéçšããå¿ èŠããããããããŸããã
- ã»ãã¥ãªãã£ïŒæ©å¯ããŒã¿ã®ä¿è·ã¯æéèŠã§ããåŠçãä¿åãéä¿¡äžã«ããŒã¿ãä¿è·ããããã®é©åãªã»ãã¥ãªãã£å¯Ÿçã宿œããŠãã ããã
ã°ããŒãã«ãªåœ±é¿ïŒåšåº«æé©åã¢ãã«ã§é¡§å®¢ããŒã¿ãæ±ãæ¹æ³ã«åœ±é¿ãäžããå¯èœæ§ã®ããããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒäŸïŒGDPRãCCPAïŒãèæ ®ããŠãã ãããããã«ãã°ããŒãã«ãœãªã¥ãŒã·ã§ã³ãå±éããéã¯ãã€ã³ãã©ãæ¥ç¶æ§ãçŸå°ã®èŠå¶ã®éããåžžã«èæ ®ããå¿ èŠããããŸãã
ãµãã©ã€ãã§ãŒã³åšåº«æé©åã«ãããPythonå°å ¥ã®ããã®ãã¹ããã©ã¯ãã£ã¹
åšåº«æé©åã®ããã«Pythonãæåè£ã«å®è£ ããã«ã¯ã以äžã®ãã¹ããã©ã¯ãã£ã¹ã«åŸã£ãŠãã ããã
- æç¢ºãªç®æšãå®çŸ©ããïŒéå§ããåã«ãç®æšãšè§£æ±ºããããšããŠããåé¡ãæç¢ºã«å®çŸ©ããŠãã ãããäŸãã°ãåšåº«ä¿ç®¡ã³ã¹ãã®åæžãç®æããŠããã®ãã顧客ãµãŒãã¹ã¬ãã«ã®åäžãç®æããŠããã®ãããããã¯ãã®äž¡æ¹ã§ããããïŒ
- å°ããå§ããŠå埩ããïŒçµç¹å šäœã«å°å ¥ããåã«ããã€ããããããžã§ã¯ããç¹å®ã®è£œåã©ã€ã³ããå§ããŠãã¢ãããŒãããã¹ããæŽç·ŽãããŸãããã
- é©åãªããŒã«ãéžæããïŒããŒãºã«é©ããPythonã©ã€ãã©ãªãéžæããŠãã ãããããŒã¿æäœã«ã¯pandasãæ©æ¢°åŠç¿ãšæç³»ååæã«ã¯scikit-learnãšstatsmodelsãæé©åã«ã¯PuLPãªã©ã®ã©ã€ãã©ãªãæ€èšããŠãã ããã
- ããŒã¿å質ãåªå ããïŒããŒã¿ã®æ£ç¢ºæ§ãšå®å šæ§ã確ä¿ããããã«æéãæè³ããŠãã ãããããã«ã¯ãããŒã¿ã®ã¯ãªãŒãã³ã°ãæ€èšŒãäžè²«ãã圢åŒãžã®å€æãå«ãŸããŸãã
- ã¢ãžã¥ãŒã«åãããååã«ææžåãããã³ãŒããæ§ç¯ããïŒçè§£ãããããä¿å®ã容æã§ãä¿®æ£å¯èœãªã³ãŒããèšè¿°ããŠãã ãããã³ã¡ã³ãã䜿çšããŠã³ãŒãã説æããã¢ãã«ãææžåããŠãã ããã
- å¯èœãªéãèªååããïŒããŒã¿æœåºãããŒã¿å€æãã¢ãã«å®è¡ãã¬ããŒãçæãèªååããŠãæéãç¯çŽãããšã©ãŒãåæžããŸãããã
- çµæãç£èŠãè©äŸ¡ããïŒåšåº«å転çãæ³šæå è¶³çãäºæž¬ç²ŸåºŠãªã©ã®äž»èŠæ¥çžŸè©äŸ¡ææšïŒKPIïŒã远跡ããŸããããã¢ãã«ã®ããã©ãŒãã³ã¹ã宿çã«è©äŸ¡ããå¿ èŠã«å¿ããŠèª¿æŽããŠãã ããã
- å°éå®¶ã®æå°ãæ±ããïŒPythonãšåšåº«æé©åã®çµéšãæã€ããŒã¿ãµã€ãšã³ãã£ã¹ãããµãã©ã€ãã§ãŒã³ã³ã³ãµã«ã¿ã³ããšã®ååãæ€èšããŠãã ããã
- ãã¬ãŒãã³ã°ã«æè³ããïŒPythonããŒã¹ã®ãœãªã¥ãŒã·ã§ã³ã䜿çšããã³ç¶æããããã«å¿ èŠãªãã¬ãŒãã³ã°ãåŸæ¥å¡ã«æäŸããŠãã ããã
- ç¶ç¶çæ¹åã®èãæ¹ãåãå ¥ããïŒåšåº«æé©åã¯ç¶ç¶çãªããã»ã¹ã§ããå€åããåžå Žç¶æ³ãããžãã¹ããŒãºã«é©å¿ããããã«ãã¢ãã«ãããã»ã¹ãã·ã¹ãã ã宿çã«èŠçŽããæ¹åããŠãã ããã
çµè«
Pythonã¯ãã°ããŒãã«åžå Žã«ãããåšåº«ç®¡çã®æé©åãšãµãã©ã€ãã§ãŒã³å¹çã®åäžãå®çŸããããã®åŒ·åã§å€çšéãªãã©ãããã©ãŒã ãæäŸããŸããPythonã®æ©èœã掻çšããããšã§ãäŒæ¥ã¯ã³ã¹ããåæžãã顧客ãµãŒãã¹ãåäžãããå šäœçãªç«¶äºåãé«ããããšãã§ããŸããããŒã¿ååŸãéèŠäºæž¬ããåšåº«èšç»ãã¬ããŒãäœæã«è³ããŸã§ãPythonã¯äŒæ¥ãããŒã¿é§ååã®æææ±ºå®ãè¡ããåšåº«ãæé©åãããµãã©ã€ãã§ãŒã³å šäœã®ããã©ãŒãã³ã¹ãåäžãããããšãå¯èœã«ããŸãããããã®æŠç¥ãåãå ¥ããããšã§ãçµç¹ã¯ã°ããŒãã«ãµãã©ã€ãã§ãŒã³ã®è€éããä¹ãè¶ããããžãã¹ç®æšãéæããããã®ååãªæºåãæŽããŸããããã«ç€ºãããäŸã¯ãåšåº«æé©åã«ãããPythonã®å¯èœæ§ãè§£ãæŸãšããšããŠããäŒæ¥ã«ãšã£ãŠã®åºçºç¹ãšãªããŸããéèŠãªã®ã¯ãæè¡çãªå°éç¥èãšãµãã©ã€ãã§ãŒã³ããã»ã¹ããã³ã°ããŒãã«åžå Žã®ãã€ããã¯ã¹ã«å¯Ÿããæ·±ãçè§£ãçµã¿åãããããšã§ãã