PythonããœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ã§ã©ã®ããã«ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã匷åãããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ãšãšã³ã²ãŒãžã¡ã³ããä¿é²ããŠããããæ¢ããŸããã¢ã«ãŽãªãºã ããã¯ããã¯ãã°ããŒãã«ãªå¿çšã«ã€ããŠåŠã³ãŸãã
ãœãŒã·ã£ã«ã¡ãã£ã¢ã«ãããPythonïŒã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®æ§ç¯
ãœãŒã·ã£ã«ã¡ãã£ã¢ã¯ãçŸä»£ç掻ã«äžå¯æ¬ ãªäžéšãšãªããäžçäžã§æ°ååã®äººã ãç¹ãã§ããŸãããããã®ãã©ãããã©ãŒã ã®äžå¿ã«ã¯ã匷åãªãšã³ãžã³ãã€ãŸãã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ããããŸãããã®ã·ã¹ãã ã¯ããŠãŒã¶ãŒã衚瀺ãããã®ã決å®ãããšã³ã²ãŒãžã¡ã³ããè²»ããæéãããã³å šäœçãªãšã¯ã¹ããªãšã³ã¹ã«åœ±é¿ãäžããŸããè±å¯ãªã©ã€ãã©ãªã®ãšã³ã·ã¹ãã ãæã€Pythonã¯ããããã®æŽç·Žãããã·ã¹ãã ãæ§ç¯ããã³å±éããããã®äž»èŠãªèšèªã§ãã
ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®éèŠæ§
ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã¯ãããã€ãã®çç±ããéèŠã§ãã
- ãŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ã®åäžïŒã³ã³ãã³ãã¹ããªãŒã ãããŒãœãã©ã€ãºããåãŠãŒã¶ãŒã«ãšã£ãŠããé¢é£æ§ã®é«ããé åçãªãã®ã«ããŸããããã«ãããæºè¶³åºŠãåäžããå šäœçãªãšã¯ã¹ããªãšã³ã¹ãåäžããŸãã
- ãšã³ã²ãŒãžã¡ã³ãã®åäžïŒãŠãŒã¶ãŒã楜ããå¯èœæ§ã®ããã³ã³ãã³ãã衚瀺ããããšã§ããããã®ã·ã¹ãã ã¯ãŠãŒã¶ãŒããã©ãããã©ãŒã ã§è²»ããæéãå¢ãããã€ã³ã¿ã©ã¯ã·ã§ã³ïŒããããã·ã§ã¢ãã³ã¡ã³ãïŒãä¿é²ããŸãã
- ã³ã³ãã³ãçºèŠïŒãŠãŒã¶ãŒãä»ã®æ¹æ³ã§ã¯èŠã€ããããªãã£ãå¯èœæ§ã®ããæ°ããã³ã³ãã³ããšã¯ãªãšã€ã¿ãŒãçºèŠããã®ã«åœ¹ç«ã¡ãèŠéãåºããã³ã³ãã³ãæ¶è²»ã倿§åããŸãã
- ããžãã¹ç®æšïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã¯ãããžãã¹ç®æšã«çŽæ¥é¢é£ããŠããŸããåºååçãä¿é²ãïŒãŠãŒã¶ãŒãé¢é£æ§ã®é«ãåºåã«è§Šããããã«ããããšã§ïŒã売äžãå¢ããïŒeã³ããŒã¹ã®çµ±åïŒããã©ãããã©ãŒã ã®ç²çæ§ãåäžãããããšãã§ããŸãïŒãŠãŒã¶ãŒãäœåºŠãæ»ã£ãŠããããã«ïŒã
Pythonãéžã°ããçç±
ãœãŒã·ã£ã«ã¡ãã£ã¢ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã®åéã«ãããPythonã®äººæ°ã¯ãããã€ãã®éèŠãªå©ç¹ããæ¥ãŠããŸãã
- è±å¯ãªã©ã€ãã©ãªã®ãšã³ã·ã¹ãã ïŒPythonã¯ãããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ãããã³äººå·¥ç¥èœã®ããã«ç¹å¥ã«èšèšãããåºå€§ã§åŒ·åãªã©ã€ãã©ãªã®ã³ã¬ã¯ã·ã§ã³ãèªã£ãŠããŸããäž»ãªã©ã€ãã©ãªã«ã¯ä»¥äžãå«ãŸããŸãã
- NumPyïŒæ°å€èšç®ãšé åæäœçšã
- PandasïŒããŒã¿åæãšæäœïŒããŒã¿ãã¬ãŒã ïŒçšã
- Scikit-learnïŒæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ïŒåé¡ãååž°ãã¯ã©ã¹ã¿ãªã³ã°ãªã©ïŒçšã
- TensorFlow & PyTorchïŒæ·±å±€åŠç¿ã¢ãã«çšã
- SurpriseïŒã¬ã³ã¡ã³ããŒã·ã¹ãã ã®æ§ç¯ãšåæã«ç¹åããPython scikitã
- 䜿ãããããšå¯èªæ§ïŒPythonã®æ§æã¯ããã®æç¢ºããšå¯èªæ§ã§ç¥ãããŠãããè€éãªã¢ã«ãŽãªãºã ã®éçºããããã°ãããã³ä¿å®ã容æã«ããŸããããã«ãããéçºæéãççž®ãããããè¿ éãªãããã¿ã€ãã³ã°ãå¯èœã«ãªããŸãã
- å€§èŠæš¡ã§æŽ»çºãªã³ãã¥ããã£ïŒå·šå€§ãªã³ãã¥ããã£ã¯ãååãªãµããŒãããã¥ãŒããªã¢ã«ãããã³æ¢è£œã®ãœãªã¥ãŒã·ã§ã³ãæäŸããŸããããã«ãããéçºè ã¯ããã«çããèŠã€ããç¥èãå ±æãããããžã§ã¯ãã§å ±åäœæ¥ã§ããŸãã
- ã¹ã±ãŒã©ããªãã£ïŒPythonã¯ãå€§èŠæš¡ãªããŒã¿ã»ãããšé«ãã©ãã£ãã¯ããªã¥ãŒã ãåŠçããããã«ã¹ã±ãŒãªã³ã°ã§ããŸããAWSãGoogle CloudãAzureãªã©ã®ã¯ã©ãŠããã©ãããã©ãŒã ã¯ãPythonããŒã¹ã®ã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®å±éã«åªãããµããŒããæäŸããŸãã
- æ±çšæ§ïŒPythonã¯ãããŒã¿åéãšååŠçããã¢ãã«ã®ãã¬ãŒãã³ã°ãè©äŸ¡ãããã³å±éãŸã§ãã¬ã³ã¡ã³ããŒã·ã§ã³ãã€ãã©ã€ã³ã®ããŸããŸãªæ®µéã§äœ¿çšã§ããŸãã
ã³ã¢ã³ã³ã»ãããšã¢ã«ãŽãªãºã
ã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®æ§ç¯ã«ã¯ãããã€ãã®åºæ¬çãªã¢ã«ãŽãªãºã ãšæŠå¿µã䜿çšãããŸãããããã¯ã次ã®ããã«å€§ãŸãã«åé¡ã§ããŸãã
å調ãã£ã«ã¿ãªã³ã°
å調ãã£ã«ã¿ãªã³ã°ã¯ãä»ã®ãŠãŒã¶ãŒã®è¡åãå©çšããŠã¬ã³ã¡ã³ããŒã·ã§ã³ãè¡ããŸããã³ã¢ãªã¢ã€ãã¢ã¯ãéå»ã«åæ§ã®å奜ãæã£ãŠãããŠãŒã¶ãŒã¯ãå°æ¥ãåæ§ã®å奜ãæã€å¯èœæ§ãé«ããšããããšã§ãã
- ãŠãŒã¶ãŒããŒã¹ã®å調ãã£ã«ã¿ãªã³ã°ïŒãã®ã¢ãããŒãã¯ãã¿ãŒã²ãããŠãŒã¶ãŒãšé¡äŒŒãã奜ã¿ã®ãŠãŒã¶ãŒãç¹å®ãããããã®é¡äŒŒãŠãŒã¶ãŒã楜ããã ã¢ã€ãã ãæšå¥šããŸãã
- ã¢ã€ãã ããŒã¹ã®å調ãã£ã«ã¿ãªã³ã°ïŒãã®ã¢ãããŒãã¯ã¢ã€ãã ã«çŠç¹ãåœãŠãã¿ãŒã²ãããŠãŒã¶ãŒãæ°ã«å ¥ã£ãã¢ã€ãã ãšé¡äŒŒããŠããã¢ã€ãã ãç¹å®ããŸãã
- è¡ååè§£ïŒãŠãŒã¶ãŒãšã¢ã€ãã ã®ã€ã³ã¿ã©ã¯ã·ã§ã³è¡åãäœæ¬¡å è¡åã«åè§£ããæœåšçãªç¹åŸŽããã£ããã£ãããããé«åºŠãªæè¡ãç¹ç°å€åè§£ïŒSVDïŒãšéè² å€è¡ååè§£ïŒNMFïŒã¯äžè¬çãªæ¹æ³ã§ãã
äŸïŒãœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ã¯ãåæ§ã®èªæžç¿æ £ãæã€ãŠãŒã¶ãŒãæ°ã«å ¥ã£ãèšäºã«åºã¥ããŠããŠãŒã¶ãŒã«èšäºãæšå¥šãããããã©ããŒããä»ã®ãŠãŒã¶ãŒãæšå¥šãããããå ŽåããããŸããäžè¬çãªæŠç¥ã¯ããŠãŒã¶ãŒã®ãããã¯ãŒã¯å ãŸãã¯ãã倧ããªãµã³ãã«å ã®ä»ã®ãŠãŒã¶ãŒããã®è©äŸ¡/ã€ã³ã¿ã©ã¯ã·ã§ã³ïŒããããã·ã§ã¢ãã³ã¡ã³ãïŒã«åºã¥ããŠã³ã³ãã³ããéã¿ä»ãããããšã§ãã
ã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°
ã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ã¯ãã¢ã€ãã èªäœã®å±æ§ã«äŸåããŠã¬ã³ã¡ã³ããŒã·ã§ã³ãè¡ããŸããã¢ã€ãã ã®ç¹åŸŽãåæããŠããŠãŒã¶ãŒãéå»ã«æ°ã«å ¥ã£ãã¢ã€ãã ãšã®é¡äŒŒæ§ã倿ããŸãã
- ã¢ã€ãã ã®ç¹åŸŽïŒãã®ã¢ãããŒãã¯ãã¿ã°ãããŒã¯ãŒããã«ããŽãªããŸãã¯èª¬æãªã©ãã¢ã€ãã ã®å±æ§ã«çŠç¹ãåœãŠãŠããŸãã
- ãŠãŒã¶ãŒãããã¡ã€ã«ïŒãŠãŒã¶ãŒãããã¡ã€ã«ã¯ããŠãŒã¶ãŒãã€ã³ã¿ã©ã¯ã·ã§ã³ããã¢ã€ãã ããã®å¥œã¿ãèå³ã«åºã¥ããŠäœæãããŸãã
- é¡äŒŒæ§ã®å°ºåºŠïŒã³ãµã€ã³é¡äŒŒåºŠãªã©ã®ææ³ã䜿çšããŠãã¢ã€ãã ãããã¡ã€ã«ãšãŠãŒã¶ãŒã®ãããã¡ã€ã«éã®é¡äŒŒæ§ãèšç®ããŸãã
äŸïŒYouTubeã®ãããªãã©ãããã©ãŒã ã¯ãåç»ã®ã¿ã°ã説æããŠãŒã¶ãŒã®èŠèŽå±¥æŽã«åºã¥ããŠåç»ãæšå¥šããå ŽåããããŸãããŠãŒã¶ãŒããæ©æ¢°åŠç¿ãã«é¢ããåç»ãé »ç¹ã«èŠèŽããå Žåãã·ã¹ãã ã¯ãã®ãããã¯ã«é¢é£ããåç»ãããã«æšå¥šããå¯èœæ§ãé«ããªããŸãã
ãã€ããªããã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã
ãã€ããªããã·ã¹ãã ã¯ãå調ãã£ã«ã¿ãªã³ã°ãšã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ã®ã¢ãããŒããçµã¿åãããŠãäž¡æ¹ã®æ¹æ³ã®åŒ·ã¿ãå©çšããããããã®åŒ±ç¹ã軜æžããŸãã
- äºæž¬ã®çµã¿åããïŒå調ãã£ã«ã¿ãªã³ã°ã¢ãã«ãšã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ã¢ãã«ããã®äºæž¬ã¯çµã¿åããããå€ãã®å Žåãå éå¹³åãŸãã¯ããæŽç·Žãããã¢ã³ãµã³ãã«ã¡ãœããã䜿çšãããŸãã
- ç¹åŸŽæ¡åŒµïŒã³ã³ãã³ãããŒã¹ã®ç¹åŸŽã䜿çšããŠãå調ãã£ã«ã¿ãªã³ã°ã¢ãã«ãæ¡åŒµããç¹ã«ã³ãŒã«ãã¹ã¿ãŒãã®åé¡ãæ¹åã§ããŸãã
äŸïŒãœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ã®ãã€ããªããã·ã¹ãã ã¯ãåéã®ã¢ã¯ãã£ããã£ã«åºã¥ããŠãã©ããŒããã¢ã«ãŠã³ããå調ãã£ã«ã¿ãªã³ã°ã§ææ¡ãããããã®ã¢ã«ãŠã³ãããã®ã³ã³ãã³ããã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ã§æšå¥šããå ŽåããããŸãã
Pythonã«ããå®è£ ïŒç°¡ç¥åãããäŸ
ãã®äŸã§ã¯ãç°¡ç¥åãããã¢ã€ãã ããŒã¹ã®å調ãã£ã«ã¿ãªã³ã°ã·ã¹ãã ã瀺ããŸããããã¯ãå®å šã«æ©èœããå®çšŒå察å¿ã®ã·ã¹ãã ã§ã¯ãããŸããããäž»èŠãªæŠå¿µã匷調ããŠããŸãã
1. ããŒã¿ã®æºåïŒãŠãŒã¶ãŒãšæçš¿ã®ã€ã³ã¿ã©ã¯ã·ã§ã³ã衚ãããŒã¿ã»ããããããšä»®å®ããŸããããåã€ã³ã¿ã©ã¯ã·ã§ã³ã¯ããŠãŒã¶ãŒãæçš¿ãæ°ã«å ¥ã£ããã©ããã瀺ããã€ããªå€æ°ïŒ1ïŒã§ãïŒ0ïŒã
```python import pandas as pd from sklearn.metrics.pairwise import cosine_similarity # ãµã³ãã«ããŒã¿ïŒå®éã®ããŒã¿ã«çœ®ãæããŠãã ããïŒ data = { 'user_id': [1, 1, 1, 2, 2, 3, 3, 3, 4, 4], 'post_id': [101, 102, 103, 101, 104, 102, 103, 105, 104, 105], 'liked': [1, 0, 1, 0, 1, 1, 0, 1, 1, 0] } df = pd.DataFrame(data) # ããŒã¿ãããããããŠãŠãŒã¶ãŒã¢ã€ãã è¡åãäœæããŸã pivot_table = df.pivot_table(index='user_id', columns='post_id', values='liked', fill_value=0) print(pivot_table) ```
2. ã¢ã€ãã ã®é¡äŒŒæ§ã®èšç®ïŒã³ãµã€ã³é¡äŒŒåºŠã䜿çšããŠããŠãŒã¶ãŒã®ãããããã«åºã¥ããŠæçš¿éã®é¡äŒŒåºŠã枬å®ããŸãã
```python # æçš¿éã®ã³ãµã€ã³é¡äŒŒåºŠãèšç®ããŸã post_similarity = cosine_similarity(pivot_table.T) post_similarity_df = pd.DataFrame(post_similarity, index=pivot_table.columns, columns=pivot_table.columns) print(post_similarity_df) ```
3. æçš¿ã®æšå¥šïŒãŠãŒã¶ãŒãæ°ã«å ¥ã£ãæçš¿ãšé¡äŒŒããŠããæçš¿ãæšå¥šããŸãã
```python def recommend_posts(user_id, pivot_table, post_similarity_df, top_n=3): user_likes = pivot_table.loc[user_id] # æ°ã«å ¥ã£ãæçš¿ãååŸãã liked_posts = user_likes[user_likes > 0].index.tolist() # å éã¹ã³ã¢ãèšç®ãã scores = {} for post_id in liked_posts: for other_post_id, similarity in post_similarity_df.loc[post_id].items(): if other_post_id not in liked_posts and other_post_id not in scores: scores[other_post_id] = similarity elif other_post_id not in liked_posts: scores[other_post_id] += similarity # äžäœã®æšå¥šäºé ããœãŒãããŠååŸããŸã if scores: recommendations = sorted(scores.items(), key=lambda x: x[1], reverse=True)[:top_n] recommended_post_ids = [post_id for post_id, score in recommendations] return recommended_post_ids else: return [] # äŸïŒãŠãŒã¶ãŒ1ã®æçš¿ãæšå¥šãã recommendations = recommend_posts(1, pivot_table, post_similarity_df) print(f'ãŠãŒã¶ãŒ1ãžã®æšå¥šäºé ïŒ{recommendations}') ```
ãã®åºæ¬çãªäŸã¯ãPythonã䜿çšããã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã®ã³ã¢ååã瀺ããŠããŸããå®çšŒåã¬ãã«ã®ã·ã¹ãã ã«ã¯ãããé«åºŠãªããŒã¿ååŠçãç¹åŸŽéãšã³ãžãã¢ãªã³ã°ãããã³ã¢ãã«ãã¬ãŒãã³ã°ãå«ããã¯ããã«è€éãªã¢ãŒããã¯ãã£ãå«ãŸããŸãã
é«åºŠãªãã¯ããã¯ãšèæ ®äºé
ã³ã¢ã¢ã«ãŽãªãºã ã«å ããŠãããŸããŸãªé«åºŠãªãã¯ããã¯ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®ããã©ãŒãã³ã¹ãšæå¹æ§ãåäžãããŸãã
- ã³ãŒã«ãã¹ã¿ãŒãã®åé¡ïŒæ°ãããŠãŒã¶ãŒãŸãã¯ã¢ã€ãã ãå°å ¥ããããšãå©çšå¯èœãªã€ã³ã¿ã©ã¯ã·ã§ã³ããŒã¿ãã»ãšãã©ãŸãã¯ãŸã£ãããããŸããã解決çã«ã¯ãã³ã³ãã³ãããŒã¹ã®ç¹åŸŽïŒäŸïŒãŠãŒã¶ãŒãããã¡ã€ã«ãã¢ã€ãã ã®èª¬æïŒã人å£çµ±èšããŒã¿ããŸãã¯äººæ°åºŠããŒã¹ã®ã¬ã³ã¡ã³ããŒã·ã§ã³ã䜿çšããŠãã·ã¹ãã ãããŒãã¹ãã©ããããããšãå«ãŸããŸãã
- ããŒã¿ã®ã¹ããŒã¹æ§ïŒãœãŒã·ã£ã«ã¡ãã£ã¢ããŒã¿ã¯ãã°ãã°ã¹ããŒã¹ã§ãããå€ãã®ãŠãŒã¶ãŒãå©çšå¯èœãªã¢ã€ãã ã®å°ããªãµãã»ããã®ã¿ãšã€ã³ã¿ã©ã¯ã·ã§ã³ããããšãæå³ããŸããè¡ååè§£ãæ£ååãªã©ã®ææ³ã¯ãããã«å¯ŸåŠããã®ã«åœ¹ç«ã¡ãŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒçã®ããŒã¿ãã广çãªç¹åŸŽãäœæããããšã¯ãã¬ã³ã¡ã³ããŒã·ã§ã³ã®å質ã«å€§ããªåœ±é¿ãäžããŸããããã«ã¯ããŠãŒã¶ãŒã®äººå£çµ±èšãã¢ã€ãã ã®ç¹æ§ããŠãŒã¶ãŒãšã¢ã€ãã ã®ã€ã³ã¿ã©ã¯ã·ã§ã³ãã¿ãŒã³ãããã³ã³ã³ããã¹ãæ å ±ïŒæå»ãå Žæãããã€ã¹ã®çš®é¡ïŒã«é¢é£ããç¹åŸŽãå«ãŸããŸãã
- ã³ã³ããã¹ãã¬ã³ã¡ã³ããŒã·ã§ã³ïŒãŠãŒã¶ãŒããã©ãããã©ãŒã ãšã€ã³ã¿ã©ã¯ã·ã§ã³ããã³ã³ããã¹ããèæ ®ããŸããæå»ãããã€ã¹ã®çš®é¡ãå Žæããã®ä»ã®èŠçŽ ãã¬ã³ã¡ã³ããŒã·ã§ã³ããã»ã¹ã«çµã¿èŸŒãããšãã§ããŸãã
- A/Bãã¹ããšè©äŸ¡ææšïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããã«ã¯ãå³å¯ãªA/Bãã¹ããäžå¯æ¬ ã§ããäž»ãªææšã«ã¯ãã¯ãªãã¯ã¹ã«ãŒçïŒCTRïŒãã³ã³ããŒãžã§ã³çãæ»åšæéãããã³ãŠãŒã¶ãŒæºè¶³åºŠãå«ãŸããŸãã
- ãã¬ãã£ããã£ãŒãããã¯ã®åŠçïŒæç€ºçãªãã¬ãã£ããã£ãŒãããã¯ïŒå«ããæçš¿ã®é衚瀺ïŒãšæé»çãªãã¬ãã£ããã£ãŒãããã¯ïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã®ç¡èŠïŒãèæ ®ããæãŸãããªãã³ã³ãã³ãã衚瀺ãããªãããã«ã·ã¹ãã ã調æŽããããã«äœ¿çšããå¿ èŠããããŸãã
- ãã€ã¢ã¹ç·©åïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ããæ§å¥ã人皮çãã€ã¢ã¹ãªã©ã®ãã€ã¢ã¹ãæ°žç¶åããããç¹å®ã®ãŠãŒã¶ãŒã°ã«ãŒããã¢ã€ãã ãäžåœã«å·®å¥ãããããªãããã«ããŸããããã«ã¯ãæ³šææ·±ãããŒã¿ååŠçãšã¢ã«ãŽãªãºã èšèšãå«ãŸããŸãã
- 説æå¯èœãªAIïŒXAIïŒïŒç¹å®ã®ã³ã³ãã³ããæšå¥šãããçç±ã«ã€ããŠããŠãŒã¶ãŒã«èª¬æãæäŸããŸããããã«ãããéææ§ãåäžããä¿¡é Œãæ§ç¯ãããŸãã
Pythonã䜿çšããã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®æ§ç¯ã®ããã®ã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯
ããã€ãã®Pythonã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯ã¯ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®éçºãå éããŸãã
- Scikit-learnïŒå調ãã£ã«ã¿ãªã³ã°ïŒäŸïŒKNNããŒã¹ã®æ¹æ³ïŒããã³è©äŸ¡ææšã®å®è£ ãå«ããå€ãã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãšããŒã«ãæäŸããŸãã
- SurpriseïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®æ§ç¯ãšè©äŸ¡ã«ç¹åããPythonã©ã€ãã©ãªã§ããããŸããŸãªå調ãã£ã«ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã®å®è£ ãç°¡çŽ åããã¢ãã«è©äŸ¡ã®ããã®ããŒã«ãæäŸããŸãã
- TensorFlowãšPyTorchïŒãã¥ãŒã©ã«å調ãã£ã«ã¿ãªã³ã°ïŒNCFïŒãªã©ã®é«åºŠãªã¬ã³ã¡ã³ããŒã·ã§ã³ã¢ãã«ãæ§ç¯ããããã«äœ¿çšã§ãã匷åãªæ·±å±€åŠç¿ãã¬ãŒã ã¯ãŒã¯ã
- LightFMïŒå調ãã£ã«ã¿ãªã³ã°ãšã³ã³ãã³ãããŒã¹ã®ç¹åŸŽã«åºã¥ãããã€ããªããã¬ã³ã¡ã³ããŒã·ã§ã³ã¢ãã«ã®Pythonå®è£ ã§ãããé床ãšã¹ã±ãŒã©ããªãã£ã«æé©åãããŠããŸãã
- RecSysãã¬ãŒã ã¯ãŒã¯ïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ãæ§ç¯ãè©äŸ¡ãããã³æ¯èŒããããã®å æ¬çãªããŒã«ã»ãããšæšæºçãªæ¹æ³ãæäŸããŸãã
- ImplicitïŒæé»çãªå調ãã£ã«ã¿ãªã³ã°çšã®Pythonã©ã€ãã©ãªã§ãããã¯ãªãã¯ã衚瀺ãªã©ã®æé»çãªãã£ãŒãããã¯ãåŠçããã®ã«ç¹ã«å¹æçã§ãã
ã°ããŒãã«ãªã¢ããªã±ãŒã·ã§ã³ãšäŸ
ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã¯ããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ãåäžããããšã³ã²ãŒãžã¡ã³ããä¿é²ããããã«ãäžçäžã®ãœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ã§äœ¿çšãããŠããŸãã以äžã«ããã€ãã®äŸã瀺ããŸãã
- FacebookïŒãŠãŒã¶ãŒã®ã€ã³ã¿ã©ã¯ã·ã§ã³ããããã¯ãŒã¯æ¥ç¶ãããã³ã³ã³ãã³ãã®ç¹æ§ã«åºã¥ããŠãåéãã°ã«ãŒããããŒãžãããã³ã³ã³ãã³ããæšå¥šããŸãããã®ã·ã¹ãã ã¯ãå調ãã£ã«ã¿ãªã³ã°ãã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ãããã³ããŸããŸãªãã€ããªããã¢ãããŒãã䜿çšããŸããããšãã°ãFacebookã¯ããŠãŒã¶ãŒã®ããããã³ã¡ã³ããããã³ãã¥ãŒã¹èšäºã®ã·ã§ã¢ãåæããŠãããŸããŸãªãœãŒã¹ããã®åæ§ã®èšäºãæšå¥šããŸãã
- InstagramïŒãŠãŒã¶ãŒã®ã¢ã¯ãã£ããã£ãèå³ãããã³ãã©ããŒããŠãã人ã«åºã¥ããŠãæçš¿ãã¹ããŒãªãŒãããã³ã¢ã«ãŠã³ããæšå¥šããŸããInstagramã¯ãã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ãšå調ãã£ã«ã¿ãªã³ã°ãçµã¿åãããŠäœ¿çšãããŠãŒã¶ãŒã以åã«èŠãããšã®ãªãå¯èœæ§ã®ããã¢ã«ãŠã³ãããã®ã³ã³ãã³ãã衚瀺ããŸããç¹ã«ãããŸããŸãªå°åã®ã¯ãªãšã€ã¿ãŒããã®ã³ã³ãã³ãã衚瀺ããŸãã
- TwitterïŒXïŒïŒãŠãŒã¶ãŒã®ã¢ã¯ãã£ããã£ãèå³ãããã³ãããã¯ãŒã¯æ¥ç¶ã«åºã¥ããŠããã€ãŒãããã©ããŒããã¢ã«ãŠã³ããããã³ãã¬ã³ããæšå¥šããŸããæ©æ¢°åŠç¿ã掻çšããŠãŠãŒã¶ãŒã®å¥œã¿ãçè§£ããé¢é£æ§ã®é«ãã³ã³ãã³ãã衚瀺ããŸããXã¯ãå調ãã£ã«ã¿ãªã³ã°ãã³ã³ãã³ãããŒã¹ãã£ã«ã¿ãªã³ã°ãããã³æ·±å±€åŠç¿ã¢ãã«ãå«ãã¢ãã«ã®ã¢ã³ãµã³ãã«ã䜿çšããŠããã€ãŒããã©ã³ã¯ä»ãããŠè¡šç€ºããŸãã
- TikTokïŒãŠãŒã¶ãŒã®è¡åãã³ã³ãã³ãã¡ã¿ããŒã¿ãããã³ã³ã³ããã¹ãæ å ±ãåæããŠãããŒãœãã©ã€ãºããããã£ãŒããæäŸããé«åºŠãªã¬ã³ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ã䜿çšããŠããŸããTikTokã¯ã深局åŠç¿ããŒã¹ã®ã·ã¹ãã ã«å€§ããäŸåããŠãåç»ãã©ã³ã¯ä»ãããåãŠãŒã¶ãŒã«é«åºŠã«ããŒãœãã©ã€ãºããããšã¯ã¹ããªãšã³ã¹ãäœæããé«ãã¬ãã«ã®ãšã³ã²ãŒãžã¡ã³ãããããããŸãããã®ã¢ã«ãŽãªãºã ã¯ããŠãŒã¶ãŒã®ã€ã³ã¿ã©ã¯ã·ã§ã³ïŒèŠèŽæéãããããã·ã§ã¢ãã³ã¡ã³ããåæçš¿ïŒãåæããŠããŠãŒã¶ãŒã®å¥œã¿ã倿ããŸãã
- LinkedInïŒãŠãŒã¶ãŒãããã¡ã€ã«ããã£ãªã¢ã®èå³ãããã³ãããã¯ãŒã¯ã®ã¢ãã£ãªãšãŒã·ã§ã³ã«åºã¥ããŠãæ±äººãã€ãªãããèšäºãããã³ã°ã«ãŒããæšå¥šããŸããLinkedInã®ã¢ã«ãŽãªãºã ã¯ããŠãŒã¶ãŒã®ã¹ãã«ãçµéšãããã³æ€çޢ履æŽãåæããŠãããŒãœãã©ã€ãºãããæ±äººããã³ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ãæäŸããŸãã
- YouTubeïŒèŠèŽå±¥æŽãæ€çŽ¢ã¯ãšãªãããã³ãã£ã³ãã«ã®ãµãã¹ã¯ãªãã·ã§ã³ã«åºã¥ããŠåç»ãæšå¥šããŸããYouTubeã®ã¢ã«ãŽãªãºã ã«ã¯ãæå»ã䜿çšããã€ã¹ãªã©ã®ã³ã³ããã¹ãèŠå ãå«ãŸããŠãããæ·±å±€åŠç¿ããŒã¹ã®ã¢ãããŒããå©çšããŠãŠãŒã¶ãŒã®ã¢ã¯ãã£ããã£ãåæããæ°ããåç»ãæšå¥šããŸãã
ãããã¯ã»ãã®äžäŸã§ãããåãã©ãããã©ãŒã ã¯ã粟床ããšã³ã²ãŒãžã¡ã³ããããã³ãŠãŒã¶ãŒã®æºè¶³åºŠãåäžãããããã«ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ãåžžã«æŽç·ŽãããŠããŸãã
課é¡ãšä»åŸã®ãã¬ã³ã
ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®éçºã¯ãããã€ãã®èª²é¡ã«ãçŽé¢ããŠããŸãã
- ã¹ã±ãŒã©ããªãã£ïŒãœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ãçæããèšå€§ãªéã®ããŒã¿ãåŠçããã«ã¯ãã¹ã±ãŒã©ãã«ãªã¢ã«ãŽãªãºã ãšã€ã³ãã©ã¹ãã©ã¯ãã£ãå¿ èŠã§ãã
- ããŒã¿ã®å質ïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã®ç²ŸåºŠã¯ããŠãŒã¶ãŒã®ã€ã³ã¿ã©ã¯ã·ã§ã³ãã¢ã€ãã ã®å±æ§ãããã³ã³ã³ããã¹ãæ å ±ãå«ãããŒã¿ã®å質ã«äŸåããŸãã
- ã³ãŒã«ãã¹ã¿ãŒããšããŒã¿ã®ã¹ããŒã¹æ§ïŒæ°ãããŠãŒã¶ãŒãŸãã¯æ°ããã¢ã€ãã ã«æé©ãªã¬ã³ã¡ã³ããŒã·ã§ã³ãèŠã€ããããšã¯ãäŸç¶ãšããŠå€§ããªèª²é¡ã§ãã
- ãã€ã¢ã¹ãšå ¬å¹³æ§ïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ãããã€ã¢ã¹ãæ°žç¶åããããç¹å®ã®ãŠãŒã¶ãŒã°ã«ãŒããŸãã¯ã¢ã€ãã ãäžåœã«å·®å¥ãããããªãããã«ããããšãäžå¯æ¬ ã§ãã
- 説æå¯èœæ§ïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã®èåŸã«ããè«çã説æããããšã§ããŠãŒã¶ãŒã®ä¿¡é Œãšéææ§ãé«ããããšãã§ããŸãã
- é²åãããŠãŒã¶ãŒã®å¥œã¿ïŒãŠãŒã¶ãŒã®èå³ã奜ã¿ã¯åžžã«å€åããŠãããã¢ãã«ãè¿ éã«é©å¿ããå¿ èŠããããŸãã
- ç«¶äºãšé£œåïŒã³ã³ãã³ããšãŠãŒã¶ãŒãå¢å ããã«ã€ããŠãç®ç«ã¡ãåãŠãŒã¶ãŒã®ãã£ãŒãããŠãŒã¶ãŒã®ããŒãºãšèŠæã«é¢é£ããŠããããšã確èªããããšã¯ããŸããŸãå°é£ã«ãªã£ãŠããŸãã
ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã®ä»åŸã®ãã¬ã³ãã«ã¯ä»¥äžãå«ãŸããŸãã
- 深局åŠç¿ïŒã°ã©ããã¥ãŒã©ã«ãããã¯ãŒã¯ãªã©ããŠãŒã¶ãŒãšã¢ã€ãã ã®ã€ã³ã¿ã©ã¯ã·ã§ã³ããŒã¿ã«ãããè€éãªé¢ä¿ããã£ããã£ããããã«ããŸããŸãæŽç·Žãããæ·±å±€åŠç¿ã¢ãã«ã䜿çšãããŠããŸãã
- ã³ã³ããã¹ãã¬ã³ã¡ã³ããŒã·ã§ã³ïŒããé¢é£æ§ã®é«ãã¬ã³ã¡ã³ããŒã·ã§ã³ãæäŸããããã«ããªã¢ã«ã¿ã€ã ã®ã³ã³ããã¹ãæ å ±ïŒæå»ãå Žæãããã€ã¹ãªã©ïŒãçµã¿èŸŒã¿ãŸãã
- 説æå¯èœãªAIïŒXAIïŒïŒã¬ã³ã¡ã³ããŒã·ã§ã³ã説æã§ããã¢ãã«ãéçºããŠããŠãŒã¶ãŒã®ä¿¡é Œãšéææ§ãé«ããŸãã
- ããŒãœãã©ã€ãºãããã©ã³ãã³ã°ïŒãŠãŒã¶ãŒã®ãããã¡ã€ã«ãšã€ã³ã¿ã©ã¯ã·ã§ã³å±¥æŽã«åºã¥ããŠãã©ã³ãã³ã°é¢æ°ãã«ã¹ã¿ãã€ãºããŸãã
- ãã«ãã¢ãŒãã«ã³ã³ãã³ãåæïŒããã¹ããç»åãåç»ãªã©ãè€æ°ã®ã¢ããªãã£ããã®ã³ã³ãã³ããåæããŸãã
çµè«
Pythonã¯ããœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã åãã®ã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®éçºã«ãããŠéèŠãªåœ¹å²ãæãããŠããŸããè±å¯ãªã©ã€ãã©ãªã®ãšã³ã·ã¹ãã ã䜿ãããããã¹ã±ãŒã©ããªãã£ã«ããããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ãåäžããããšã³ã²ãŒãžã¡ã³ããä¿é²ããããžãã¹ç®æšãéæããããã®æŽç·Žãããã¢ã«ãŽãªãºã ãæ§ç¯ããããã®çæ³çãªéžæè¢ãšãªã£ãŠããŸãããœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ãé²åãç¶ããã«ã€ããŠãã³ã³ãã³ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®éèŠæ§ã¯å¢ãã°ããã§ããããã®ãšããµã€ãã£ã³ã°ã§æ¥éã«æé·ããŠããåéã«ãããPythonã®å°äœã確åºãããã®ã«ããŠããŸãããããã®ã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®æªæ¥ã¯ãããã«å€ãã®ããŒãœãã©ã€ãŒãŒã·ã§ã³ã説æå¯èœæ§ãããã³é©å¿æ§ã«çŠç¹ãåœãŠãäžçäžã®äººã ã®ããã«ãããè¯ããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ãçã¿åºãã§ãããã