Pythonã䜿ã£ãæ°è±¡è§£æãæ¢æ±ããŸããããããŒã¿ååŸãå¯èŠåãã¢ããªã³ã°ããããŠäžçã®æ°è±¡æŽå¯ã®ããã®å®äžçãžã®å¿çšã«ã€ããŠè§£èª¬ããŸãã
Pythonã®æ°è±¡ããŒã¿ïŒæ°è±¡è§£æã®ããã®å æ¬çã¬ã€ã
æ°è±¡ã¯ã蟲æ¥ãäº€éæ©é¢ããçœå®³å¯Ÿçãæ°åå€åç ç©¶ã«è³ããŸã§ãç§ãã¡ã®ç掻ã®ããããåŽé¢ã«åœ±é¿ãäžããŸããæ°è±¡ããŒã¿ãåæããããšã¯ããããã®åœ±é¿ãçè§£ããæ å ±ã«åºã¥ããæææ±ºå®ãè¡ãäžã§éåžžã«éèŠã§ããPythonã¯ãã©ã€ãã©ãªãããŒã«ã®åºç¯ãªãšã³ã·ã¹ãã ãåããŠãããæ°è±¡è§£æã«çæ³çãªèšèªã§ãããã®å æ¬çãªã¬ã€ãã§ã¯ãããŒã¿ã®ååŸãåŠçãå¯èŠåãã¢ããªã³ã°ãç¶²çŸ ããããã»ã¹ãé ã远ã£ãŠèª¬æããŸãã
æ°è±¡ããŒã¿åæã«Pythonã䜿ãçç±
Pythonã¯æ°è±¡ããŒã¿ã®æ±ãã«ãããŠããã€ãã®å©ç¹ãæäŸããŸãã
- è±å¯ãªãšã³ã·ã¹ãã : pandasãnumpyãmatplotlibãseabornãscikit-learnãªã©ã®ã©ã€ãã©ãªã¯ãããŒã¿æäœãåæãå¯èŠåã®ããã®åŒ·åãªããŒã«ãæäŸããŸãã
- ããŒã¿ååŸ: Pythonã¯ãæ°è±¡æ©é¢ã®APIïŒApplication Programming InterfacesïŒãWebã¹ã¯ã¬ã€ãã³ã°æè¡ãªã©ãæ§ã ãªæ°è±¡ããŒã¿ãœãŒã¹ãšç°¡åã«é£æºã§ããŸãã
- ã¹ã±ãŒã©ããªãã£: Pythonã¯å€§èŠæš¡ãªããŒã¿ã»ãããåŠçã§ãããããè€æ°ã®ãœãŒã¹ãæéã®æ°è±¡ããŒã¿ãåæã§ããŸãã
- ã³ãã¥ããã£ãµããŒã: å€§èŠæš¡ã§æŽ»çºãªã³ãã¥ããã£ã«ããããªãœãŒã¹ããã¥ãŒããªã¢ã«ãäžè¬çãªåé¡ã®è§£æ±ºçãããã«å ¥æã§ããŸãã
- ãªãŒãã³ãœãŒã¹: Pythonã¯ç¡æã§å©çšããã³é åžã§ãããããäžçäžã®ç ç©¶è ãéçºè ãã¢ã¯ã»ã¹ã§ããŸãã
æ°è±¡ããŒã¿ã®ååŸ
æ°è±¡è§£æã®æåã®ã¹ãããã¯ãå¿ èŠãªããŒã¿ãååŸããããšã§ããäžè¬çãªæ¹æ³ãããã€ã玹ä»ããŸãã
1. æ°è±¡API
å€ãã®æ°è±¡æ©é¢ãããªã¢ã«ã¿ã€ã ããã³éå»ã®æ°è±¡ããŒã¿ãžã®ã¢ã¯ã»ã¹ãæäŸããAPIãæäŸããŠããŸããããã€ãã®äžè¬çãªãªãã·ã§ã³ã¯ä»¥äžã®ãšããã§ãã
- OpenWeatherMap: äžçäžã®å°ç¹ã®çŸåšã®æ°è±¡ããŒã¿ãšäºå ±ã«ã¢ã¯ã»ã¹ã§ããç¡æãã©ã³ãæäŸããŠããŸããAPIããŒãå¿ èŠã§ãã
- AccuWeather: æéããšã®äºå ±ãéå»ã®ããŒã¿ãå«ãè©³çŽ°ãªæ°è±¡æ å ±ãæäŸããŸãã賌èªãå¿ èŠã§ãã
- National Oceanic and Atmospheric Administration (NOAA): å°äžèŠ³æž¬ããŒã¿ãã¬ãŒããŒããŒã¿ãæ°åã¢ãã«ãªã©ãè±å¯ãªæ°è±¡ããŒã¿ãAPIãéããŠæäŸããŠããŸããäž»ã«ç±³åœå ã§å©çšãããŸãããã°ããŒãã«ãªåæã®ããã®ããŒã¿ãæäŸããŸãã
- Visual Crossing Weather API: éå»ãçŸåšãããã³äºå ±ããŒã¿ãæäŸããŸãããã®APIã¯ãéå»ã®æ°è±¡ããŒã¿ã®äžæ¬ããŠã³ããŒããæäŸããŸãã
äŸïŒOpenWeatherMapã§æ°è±¡ããŒã¿ã«ã¢ã¯ã»ã¹ãã
OpenWeatherMap APIã䜿çšããã«ã¯ã`requests`ã©ã€ãã©ãªãã€ã³ã¹ããŒã«ããAPIããŒãååŸããå¿ èŠããããŸããPythonã®äŸã以äžã«ç€ºããŸãã
import requests
api_key = "YOUR_API_KEY" # Replace with your actual API key
city_name = "London"
url = f"http://api.openweathermap.org/data/2.5/weather?q={city_name}&appid={api_key}&units=metric"
response = requests.get(url)
data = response.json()
if response.status_code == 200:
temperature = data["main"]["temp"]
humidity = data["main"]["humidity"]
description = data["weather"][0]["description"]
print(f"Weather in {city_name}:")
print(f"Temperature: {temperature}°C")
print(f"Humidity: {humidity}%")
print(f"Description: {description}")
else:
print(f"Error: {data['message']}")
2. Webã¹ã¯ã¬ã€ãã³ã°
APIãå©çšã§ããªãå ŽåãWebã¹ã¯ã¬ã€ãã³ã°ã䜿çšããŠãŠã§ããµã€ãããæ°è±¡ããŒã¿ãæœåºã§ããŸããBeautiful Soupãrequestsã®ãããªã©ã€ãã©ãªã¯ããã®ããã»ã¹ãèªååããã®ã«åœ¹ç«ã¡ãŸãã
éèŠ: ããŒã¿ãã¹ã¯ã¬ã€ãã³ã°ããåã«ãå¿ ããŠã§ããµã€ãã®å©çšèŠçŽã確èªããŠãã ãããrobots.txtãå°éãããµãŒããŒã«ãªã¯ãšã¹ããéè² è·ã«ãããªãã§ãã ããã
äŸïŒãŠã§ããµã€ãããæ°è±¡ããŒã¿ãã¹ã¯ã¬ã€ãã³ã°ãã
import requests
from bs4 import BeautifulSoup
url = "https://www.timeanddate.com/weather/"
city = "tokyo"
response = requests.get(url + city)
soup = BeautifulSoup(response.content, 'html.parser')
temperature = soup.find('div', class_='h2').text
print(f"The temperature in {city} is: {temperature}")
3. å ¬éããŒã¿ã»ãã
ããã€ãã®çµç¹ããããŠã³ããŒãããŠåæã§ããå ¬éã®æ°è±¡ããŒã¿ã»ãããæäŸããŠããŸãããããã®ããŒã¿ã»ããã«ã¯ãæ§ã ãªå Žæã®éå»ã®æ°è±¡ããŒã¿ãå«ãŸããŠããããšãå€ãã§ãã
- NOAAã®åœç«ç°å¢æ å ±ã»ã³ã¿ãŒ (NCEI): å°äžèŠ³æž¬ããŒã¿ãã¬ãŒããŒããŒã¿ãæ°åã¢ãã«ãªã©ãåºç¯ãªæ°è±¡ããŒã¿ã®ã¢ãŒã«ã€ããæäŸããŠããŸãã
- 欧å·äžæäºå ±ã»ã³ã¿ãŒ (ECMWF): 1979幎ããçŸåšãŸã§ã®éå»ã®æ°è±¡ããŒã¿ãå«ãERA5åè§£æããŒã¿ã»ãããžã®ã¢ã¯ã»ã¹ãæäŸããŠããŸãã
- äžçæ°è±¡æ©é¢ (WMO): åœéããŒã¿ãžã®ã¢ã¯ã»ã¹ãæäŸããååœã®æ°è±¡æ©é¢ãšååããŠããŸãã
ããŒã¿ã®ååŠçãšã¯ã¬ã³ãžã³ã°
æ°è±¡ããŒã¿ãååŸããããåæã®åã«ååŠçãšã¯ã¬ã³ãžã³ã°ãè¡ãå¿ èŠããããŸããããã«ã¯éåžžãæ¬ æå€ã®åŠçãããŒã¿åã®å€æãå€ãå€ã®é€å»ãå«ãŸããŸãã
1. æ¬ æå€ã®åŠç
ã»ã³ãµãŒã®èª€åäœãããŒã¿äŒéãšã©ãŒã«ãããæ°è±¡ããŒã¿ã»ããã«ã¯æ¬ æå€ãããèŠãããŸããããã€ãã®ææ³ã§æ¬ æå€ãåŠçã§ããŸãã
- åé€: æ¬ æå€ãå«ãè¡ãŸãã¯åãåé€ããŸããæ¬ æå€ã®æ°ãå°ãªãå Žåã«é©ããŠããŸãã
- è£å®: æ¬ æå€ãæšå®å€ã§çœ®ãæããŸããäžè¬çãªè£å®æ¹æ³ã«ã¯ãå¹³åãäžå€®å€ããŸãã¯æé »å€ã«ããè£å®ããããŸãã
- å æ¿: è¿æ¥ããããŒã¿ç¹ã®å€ã«åºã¥ããŠæ¬ æå€ãæšå®ããŸããæç³»åããŒã¿ã«é©ããŠããŸãã
äŸïŒpandasã§æ¬ æå€ãåŠçãã
import pandas as pd
import numpy as np
# Sample weather data with missing values
data = {
"date": ["2024-01-01", "2024-01-02", "2024-01-03", "2024-01-04", "2024-01-05"],
"temperature": [10, 12, np.nan, 14, 15],
"humidity": [80, np.nan, 75, 70, 65]
}
df = pd.DataFrame(data)
# Impute missing temperature values with the mean
df["temperature"].fillna(df["temperature"].mean(), inplace=True)
# Impute missing humidity values with the median
df["humidity"].fillna(df["humidity"].median(), inplace=True)
print(df)
2. ããŒã¿åã®å€æ
åã®ããŒã¿åãåæã«é©ããŠããããšã確èªããŠãã ãããäŸãã°ãæ¥ä»ã¯datetime圢åŒã§ãæ°å€ã¯floatãŸãã¯integer圢åŒã§ããã¹ãã§ãã
äŸïŒpandasã§ããŒã¿åã倿ãã
df["date"] = pd.to_datetime(df["date"])
3. å€ãå€ã®é€å»
å€ãå€ã¯åæãæªããå¯èœæ§ããããããé€å»ãŸãã¯èª¿æŽããå¿ èŠããããŸããå€ã倿€åºã®äžè¬çãªæ¹æ³ã«ã¯æ¬¡ã®ãã®ããããŸãã
- Zã¹ã³ã¢: å¹³åããç¹å®ã®æšæºåå·®æ°é¢ããŠããå€ãç¹å®ããŸãã
- ååäœç¯å² (IQR): IQRã®å€ã«ããå€ãç¹å®ããŸãã
- èŠèŠçæ€æ»: ããŒã¿ãããããããå€ãå€ãèŠèŠçã«ç¹å®ããŸãã
äŸïŒIQRã§å€ãå€ãé€å»ãã
def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
return df
df = remove_outliers(df, "temperature")
print(df)
ããŒã¿å¯èŠå
æ°è±¡ããŒã¿ãå¯èŠåããããšã¯ããã¿ãŒã³ãåŸåãé¢ä¿æ§ãçè§£ããããã«äžå¯æ¬ ã§ããPythonã¯ãæçãªå¯èŠåãäœæããããã®ããã€ãã®ã©ã€ãã©ãªãæäŸããŸãã
1. æãç·ã°ã©ã
æãç·ã°ã©ãã¯ãæéã®çµéã«äŒŽãæ°æž©ã湿床ãªã©ã®æç³»åããŒã¿ãå¯èŠåããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒmatplotlibã§æãç·ã°ã©ããäœæãã
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.plot(df["date"], df["temperature"], marker='o')
plt.xlabel("Date")
plt.ylabel("Temperature (°C)")
plt.title("Temperature Over Time")
plt.grid(True)
plt.show()
2. æ£åžå³
æ£åžå³ã¯ãæ°æž©ãšæ¹¿åºŠã®ããã«ã2ã€ã®å€æ°éã®é¢ä¿ãå¯èŠåããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒmatplotlibã§æ£åžå³ãäœæãã
plt.figure(figsize=(8, 6))
plt.scatter(df["temperature"], df["humidity"])
plt.xlabel("Temperature (°C)")
plt.ylabel("Humidity (%)")
plt.title("Temperature vs. Humidity")
plt.grid(True)
plt.show()
3. ãã¹ãã°ã©ã
ãã¹ãã°ã©ã ã¯ãæ°æž©ãªã©ã®åäžå€æ°ã®ååžãå¯èŠåããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒmatplotlibã§ãã¹ãã°ã©ã ãäœæãã
plt.figure(figsize=(8, 6))
plt.hist(df["temperature"], bins=10)
plt.xlabel("Temperature (°C)")
plt.ylabel("Frequency")
plt.title("Distribution of Temperature")
plt.grid(True)
plt.show()
4. ããŒãããã
ããŒããããã¯ãè€æ°ã®å€æ°éã®çžé¢é¢ä¿ãå¯èŠåããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒseabornã§ããŒãããããäœæãã
import seaborn as sns
correlation_matrix = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
5. å°ç空éå¯èŠå
å°å³äžã«æ°è±¡ããŒã¿ãå¯èŠåããã«ã¯ãGeoPandasãBasemapïŒãŸãã¯ãã®çŸä»£çãªä»£æ¿ã§ããCartopyïŒãšãã£ãã©ã€ãã©ãªã圹ç«ã¡ãŸãããããã®ã©ã€ãã©ãªã䜿çšãããšãå°ççãªå°å³äžã«æ°è±¡ããŒã¿ãããããããæ°è±¡ãã¿ãŒã³ã空éçã«è¡šçŸããå¯èŠåãäœæã§ããŸãã
äŸïŒCartopyã䜿çšããå°ç空éããããã®äœæïŒæŠå¿µçïŒ
泚ïŒãã®äŸã§ã¯Cartopyãšãã®é¢é£äŸåé¢ä¿ã®ã€ã³ã¹ããŒã«ãå¿ èŠã§ãããããã¯è€éãªå ŽåããããŸããã³ãŒãã¹ããããã¯ç°¡ç¥åãããæŠèŠãæäŸããŸãã
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
# Create a figure and an axes object with a specific projection
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
# Add coastlines
ax.coastlines()
# Example Data (latitude, longitude, temperature)
latitude = [40.71, 34.05, 51.51] # New York, Los Angeles, London
longitude = [-74.01, -118.24, -0.13]
temperature = [15, 25, 10]
# Plot the data
plt.scatter(longitude, latitude, c=temperature, transform=ccrs.PlateCarree())
# Add colorbar
plt.colorbar(label='Temperature (°C)')
# Set extent to a specific region (e.g., Europe)
# ax.set_extent([-10, 40, 35, 70], crs=ccrs.PlateCarree())
plt.title('Temperature Map')
plt.show()
æ°è±¡ããŒã¿åæãšã¢ããªã³ã°
ããŒã¿ãååŠçãå¯èŠåããããæ§ã ãªåæãå®è¡ããäºæž¬ã¢ãã«ãæ§ç¯ã§ããŸãã
1. æç³»ååæ
æç³»ååæã¯ãæéã®çµéãšãšãã«åéãããããŒã¿ç¹ãåæããŠããã¿ãŒã³ãåŸåãããã³å£ç¯æ§ãç¹å®ãããã®ã§ããäžè¬çãªææ³ã«ã¯æ¬¡ã®ãã®ããããŸãã
- åè§£: æç³»åãåŸåãå£ç¯æ§ãæ®å·®ã®ã³ã³ããŒãã³ãã«åé¢ããŸãã
- èªå·±çžé¢: æç³»åãšããã®é å»¶å€ãšã®çžé¢é¢ä¿ã枬å®ããŸãã
- äºæž¬: éå»ã®ããŒã¿ã«åºã¥ããŠå°æ¥ã®å€ãäºæž¬ããŸããäžè¬çãªäºæž¬ã¢ãã«ã«ã¯ãARIMAïŒèªå·±ååž°ååç§»åå¹³åïŒãææ°å¹³æ»åããããŸãã
äŸïŒstatsmodelsã«ããæç³»ååè§£
from statsmodels.tsa.seasonal import seasonal_decompose
# Ensure the 'date' column is the index for time series decomposition
df = df.set_index('date')
# Perform seasonal decomposition
decomposition = seasonal_decompose(df["temperature"], model='additive', period=7) #Assuming a weekly seasonality
# Plot the components
plt.figure(figsize=(12, 8))
plt.subplot(411)
plt.plot(decomposition.observed, label='Observed')
plt.legend(loc='upper left')
plt.subplot(412)
plt.plot(decomposition.trend, label='Trend')
plt.legend(loc='upper left')
plt.subplot(413)
plt.plot(decomposition.seasonal, label='Seasonal')
plt.legend(loc='upper left')
plt.subplot(414)
plt.plot(decomposition.resid, label='Residual')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
2. ååž°åæ
ååž°åæã¯ãåŸå±å€æ°ïŒäŸïŒæ°æž©ïŒãš1ã€ä»¥äžã®ç¬ç«å€æ°ïŒäŸïŒæ¹¿åºŠã颚éïŒãšã®é¢ä¿ãã¢ãã«åããããšãå«ã¿ãŸããäžè¬çãªååž°ã¢ãã«ã«ã¯æ¬¡ã®ãã®ããããŸãã
- ç·åœ¢ååž°: é¢ä¿ãç·åœ¢æ¹çšåŒãšããŠã¢ãã«åããŸãã
- å€é åŒååž°: é¢ä¿ãå€é åŒæ¹çšåŒãšããŠã¢ãã«åããŸãã
- éååž°: åŸå±å€æ°ãšè€æ°ã®ç¬ç«å€æ°ãšã®é¢ä¿ãã¢ãã«åããŸãã
äŸïŒscikit-learnã«ããç·åœ¢ååž°
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# Prepare the data
X = df[["humidity"]]
y = df["temperature"]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a linear regression model
model = LinearRegression()
# Train the model
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
#Visualize the results
plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=3)
plt.xlabel("Humidity")
plt.ylabel("Temperature")
plt.title("Linear Regression: Temperature vs. Humidity")
plt.show()
3. åé¡åæ
åé¡åæã¯ãæ°è±¡æ¡ä»¶ãäºåã«å®çŸ©ãããã¯ã©ã¹ïŒäŸïŒæŽããæããéšïŒã«åé¡ããããšãå«ã¿ãŸããäžè¬çãªåé¡ã¢ãã«ã«ã¯æ¬¡ã®ãã®ããããŸãã
- ããžã¹ãã£ãã¯ååž°: äºå€ã®çµæã®ç¢ºçãã¢ãã«åããŸãã
- æ±ºå®æš: ç¬ç«å€æ°ã®å€ã«åºã¥ããŠããŒã¿ããµãã»ããã«åå²ããŸãã
- ãµããŒããã¯ã¿ãŒãã·ã³ (SVM): ã¯ã©ã¹ãåé¢ããæé©ãªè¶ å¹³é¢ãèŠã€ããŸãã
- ã©ã³ãã ãã©ã¬ã¹ã: æ±ºå®æšã®ã¢ã³ãµã³ãã«ã§ãã
äŸïŒscikit-learnã«ããåé¡
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
# Assume you have a column named 'weather_condition' with categorical values
# like 'Sunny', 'Cloudy', 'Rainy'
# First, convert categorical labels to numerical ones
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['weather_condition_encoded'] = le.fit_transform(df['weather_condition'])
# Prepare features and target variable
X = df[['temperature', 'humidity', 'wind_speed']] # Example features
y = df['weather_condition_encoded']
# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize and train the Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, y_train)
# Make predictions on the test set
y_pred = rf_classifier.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
# Show the classification report
print(classification_report(y_test, y_pred))
é«åºŠãªæè¡ãšå¿çš
1. æ°è±¡äºå ±ã®ããã®æ©æ¢°åŠç¿
æ©æ¢°åŠç¿ã¢ãã«ã¯ãéå»ã®ããŒã¿ããåŠç¿ããè€éãªãã¿ãŒã³ãç¹å®ããããšã§ãæ°è±¡äºå ±ã®ç²ŸåºŠãåäžãããããã«äœ¿çšã§ããŸãããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒRNNsïŒãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNsïŒãªã©ã®ãã£ãŒãã©ãŒãã³ã°ã¢ãã«ã¯ãæ°è±¡äºå ±ã«ãããŠææãªçµæã瀺ããŠããŸãã
2. æ°åå€ååæ
æ°è±¡ããŒã¿ã¯ãæ°åå€åã®åŸåãšãã¿ãŒã³ãåæããããã«äœ¿çšã§ããŸããé·æçãªæ°è±¡ããŒã¿ãåæããããšã§ãç ç©¶è ã¯æ°æž©ãéæ°Žéããã®ä»ã®æ°å倿°ã®å€åãç¹å®ã§ããŸãããããã®åæã¯ãæ°åå€åã®åœ±é¿ãçè§£ããç·©åããã³é©å¿ã®ããã®æŠç¥ãçå®ããã®ã«åœ¹ç«ã¡ãŸãã
3. 蟲æ¥ãšæ°è±¡
æ°è±¡ãã¿ãŒã³ãšãããäœç©ã®åç©«éã«äžãã圱é¿ãçè§£ããããšã¯ã蟲æ¥ã«ãšã£ãŠæ¥µããŠéèŠã§ããæ°è±¡ããŒã¿ãäœç©ããŒã¿ãšçµã¿åãããŠåæããããšã«ããã蟲家ã蟲æ¥å£äœã¯æ€ä»ããçæŒãåç©«ã«ã€ããŠæ å ±ã«åºã¥ããæ±ºå®ãäžãããšãã§ããŸããæ©æ¢°åŠç¿ã¢ãã«ã¯æ°è±¡æ¡ä»¶ã«åºã¥ããŠäœç©ã®åç©«éãäºæž¬ããèŸ²æ¥æ £è¡ãæé©åããããšãã§ããŸãã
äŸïŒæ°è±¡ãã³ãŒããŒçç£ã«äžãã圱é¿ïŒèª¬æïŒ
ãã©ãžã«ã®ã³ãŒããŒè±çç£ãåæããŠãããšä»®å®ããŸããããéå»ã®æ°è±¡ããŒã¿ïŒæ°æž©ãéæ°ŽéïŒãã³ãŒããŒã®åç©«éããŒã¿ãšçµã¿åãããããšãã§ããŸããéè±æã®éšãå€ããããšçèç ã«ã€ãªãããåç©«éãæžå°ããå¯èœæ§ããããŸããçè²æã®é«æž©ã¯æçãæ©ããè±ã®å質ã«åœ±é¿ãäžããå¯èœæ§ããããŸããPythonã䜿çšãããšããããã®æ°è±¡ãã©ã¡ãŒã¿ã«åºã¥ããŠã³ãŒããŒã®åç©«éãäºæž¬ããã¢ãã«ãéçºã§ããŸãã
4. çœå®³å¯Ÿç
æ°è±¡ããŒã¿ã¯ãçœå®³å¯Ÿçãšå¯Ÿå¿ã«ãšã£ãŠæ¥µããŠéèŠã§ããæ°è±¡ãã¿ãŒã³ãåæããããªã±ãŒã³ã措氎ãå¹²ã°ã€ãªã©ã®ç°åžžæ°è±¡ãäºæž¬ããããšã§ãåœå±ã¯ã¿ã€ã ãªãŒãªèŠåãçºããæœåšçãªçœå®³ã«åããããšãã§ããŸããããã«ããã人åœãæããç©çæå®³ãæå°éã«æããããšãã§ããŸãã
5. åçå¯èœãšãã«ã®ãŒ
æ°è±¡ããŒã¿ã¯ãç¹ã«å€ªéœå çºé»ã颚åçºé»ãšãã£ãåçå¯èœãšãã«ã®ãŒåéã§éèŠãªåœ¹å²ãæãããŸããæ£ç¢ºãªæ°è±¡äºå ±ã¯ã倪éœå ããã³é¢šåè³æºã®å©çšå¯èœæ§ãäºæž¬ããããã«äžå¯æ¬ ã§ããããšãã«ã®ãŒäŒæ¥ãéçšãæé©åããåçå¯èœãšãã«ã®ãŒã®ä¿¡é Œæ§ã®é«ãäŸçµŠã確ä¿ããããšãå¯èœã«ããŸãã
æ°è±¡ããŒã¿åæã®ãã¹ããã©ã¯ãã£ã¹
- ããŒã¿å質: ããŒã¿ãæ£ç¢ºã§ãå®å šã§ãäžè²«ããŠããããšã確èªããŠãã ããã
- ããã¥ã¡ã³ããŒã·ã§ã³: ã³ãŒããšåæã培åºçã«ææžåããŠãã ããã
- åçŸæ§: ããŒãžã§ã³ç®¡çã䜿çšããã³ãŒããå ±æããããšã§ãåæãåçŸå¯èœã«ããŠãã ããã
- ã³ã©ãã¬ãŒã·ã§ã³: ä»ã®ç ç©¶è ãããŒã¿ãµã€ãšã³ãã£ã¹ããšååããŠãç¥èãå°éç¥èãå ±æããŠãã ããã
- å«ççèå¯: ããŒã¿ãã©ã€ãã·ãŒãã»ãã¥ãªãã£ãªã©ã®å«ççèå¯ã«çæããŠãã ããã
çµè«
Pythonã¯ãæ°è±¡ããŒã¿åæã®ããã®åŒ·åã§å€çšéãªãã©ãããã©ãŒã ãæäŸããŸãããã®ã¬ã€ãã§èª¬æãããŠããææ³ãšããŒã«ãç¿åŸããããšã§ãæ°è±¡ãã¿ãŒã³ãæ°åå€åãããã³ããããç§ãã¡ã®çæŽ»ã®æ§ã ãªåŽé¢ã«äžãã圱é¿ã«ã€ããŠè²ŽéãªæŽå¯ãåŸãããšãã§ããŸããç ç©¶è ã§ãããããŒã¿ãµã€ãšã³ãã£ã¹ãã§ãããæ°è±¡æå¥œå®¶ã§ãããPythonã¯æ°è±¡ããŒã¿ã®åãè§£ãæŸã€ã®ã«åœ¹ç«ã¡ãŸãã
ãããªãåŠç¿
- ãªã³ã©ã€ã³ã³ãŒã¹: CourseraãUdacityãedXãªã©ã®ãã©ãããã©ãŒã ã¯ãããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ãæ°è±¡åæã«é¢ããã³ãŒã¹ãæäŸããŠããŸãã
- æžç±: Jake VanderPlasèãPython Data Science HandbookããAurélien GéronèãHands-On Machine Learning with Scikit-Learn, Keras & TensorFlowãã
- ã³ãã¥ããã£: Stack OverflowãRedditïŒr/datascienceãr/weatherïŒãGitHubãªã©ã®ãªã³ã©ã€ã³ã³ãã¥ããã£ã«åå ããŠãä»ã®ããŒã¿ãµã€ãšã³ãã£ã¹ããæ°è±¡æå¥œå®¶ãšã€ãªãããŸãããã