Pythonãé«åºŠãªçç£èšç»ã·ã¹ãã ãéããŠçŸä»£ã®è£œé æ¥ãã©ã®ããã«åŒ·åããå¹çãæé©åããåœéç«¶äºåãé«ããŠããããæ¢ããŸãã
Python補é ïŒçç£èšç»ã·ã¹ãã ã®é©æ°
è£œé æ¥ã®æ§çžã¯ãå¹çæ§ãä¿ææ§ããããŠåœéç«¶äºåã®çµ¶ãéãªã远æ±ã«ãã£ãŠãæ·±å»ãªå€é©ãéããŠããŸãããã®é©åœã®äžå¿ã«ã¯ãããŒã¿ã®åãšããªã¢ã«ã¿ã€ã ã§æ å ±ã«åºã¥ããæææ±ºå®ãè¡ãèœåããããŸããPythonã¯ããã®æ±çšæ§ãšè±å¯ãªã©ã€ãã©ãªã«ãããç¹ã«çç£èšç»ã·ã¹ãã ïŒPPSïŒã®é åã«ãããŠããã®å€é©ãçœåŒããäž»èŠãªåãšããŠæµ®äžããŠããŸãã
çç£èšç»ã®é²å
æŽå²çã«ãçç£èšç»ã¯æäœæ¥ãã¹ãã¬ããã·ãŒãããããŠéãããããŒã¿åæã«å€§ããäŸåããŠããŸããããã®ã¢ãããŒãã¯ãã°ãã°é ãããšã©ãŒãçºçãããããæ¥éã«å€åããåžå Žã®éèŠã«é©å¿ããæè»æ§ã«æ¬ ããŠããŸããããšã³ã¿ãŒãã©ã€ãºãªãœãŒã¹ãã©ã³ãã³ã°ïŒERPïŒã·ã¹ãã ã®å°é ã¯ã補é ãªãã¬ãŒã·ã§ã³ã®æ§ã ãªåŽé¢ãçµ±åãã倧ããªé²æ©ããããããŸãããããããå€ãã®ERPã·ã¹ãã ã¯è€éã§ãå°å ¥ã³ã¹ããé«ããçŸä»£ã®è£œé ç°å¢ã«å¿ èŠãªã«ã¹ã¿ãã€ãºãšä¿ææ§ã®ã¬ãã«ãæäŸããªãå ŽåããããŸããäžæ¹ãPythonã¯ãããæè»ã§åŒ·åãªä»£æ¿ææ®µãæäŸããŸãã
çç£èšç»ã«Pythonã䜿çšããçç±
Pythonã¯ãçç£èšç»ã·ã¹ãã ãæ§ç¯ããã³åŒ·åããããã®é åçãªå©ç¹ãæäŸããŸãã
- æ±çšæ§: Pythonã¯ãããŒã¿åæãå¯èŠåãããæ©æ¢°åŠç¿ãWebéçºãŸã§ãå¹ åºãã¿ã¹ã¯ã«äœ¿çšã§ããæ±çšèšèªã§ãã
- è±å¯ãªã©ã€ãã©ãª: Pythonã¯ãããŒã¿ãµã€ãšã³ã¹ãç§åŠèšç®ãæé©åã®ããã«ç¹å¥ã«èšèšãããåºç¯ãªã©ã€ãã©ãªã®ãšã³ã·ã¹ãã ãèªã£ãŠããŸããäž»èŠãªã©ã€ãã©ãªã«ã¯ä»¥äžãå«ãŸããŸãã
- NumPy: æ°å€èšç®ããã³é åæäœçšã
- Pandas: ããŒã¿ã¯ãªãŒãã³ã°ã倿ãåæãå«ãããŒã¿åæããã³æäœçšã
- Scikit-learn: äºæž¬ã¢ããªã³ã°ãåé¡ãªã©ã®æ©æ¢°åŠç¿ã¿ã¹ã¯çšã
- SciPy: æé©åãçµ±èšåæãå«ããç§åŠæè¡èšç®çšã
- PuLP ããã³ OR-Tools: ãªãœãŒã¹é åãšã¹ã±ãžã¥ãŒãªã³ã°ã«äžå¯æ¬ ãªç·åœ¢èšç»æ³ãšæé©ååé¡ã®è§£æ±ºçšã
- Matplotlib ããã³ Seaborn: ããŒã¿å¯èŠåçšã
- 䜿ãããã: Pythonã®æç¢ºãªæ§æãšå¯èªæ§ã«ãããããã°ã©ãã³ã°çµéšãéãããŠãã人ã§ãæ¯èŒçç°¡åã«åŠç¿ããã³äœ¿çšã§ããŸãã
- è²»çšå¯Ÿå¹æ: Pythonã¯ãªãŒãã³ãœãŒã¹ã§ãããç¡æã§äœ¿çšã§ããããããœãããŠã§ã¢éçºãšå®è£ ã®ã³ã¹ããåæžã§ããŸãã
- ã¹ã±ãŒã©ããªãã£: Pythonã¯ãå€§èŠæš¡ãªããŒã¿ã»ãããšè€éãªè£œé ãªãã¬ãŒã·ã§ã³ãåŠçããããã«ã¹ã±ãŒãªã³ã°ã§ããŸãã
- çµ±å: Pythonã¯ãããŸããŸãªããŒã¿ããŒã¹ãERPã·ã¹ãã ããã®ä»ã®ãœãããŠã§ã¢ãã©ãããã©ãŒã ãšã·ãŒã ã¬ã¹ã«çµ±åãããŸãã
çç£èšç»ã«ãããPythonã®äž»èŠãªå¿çš
Pythonã®æ©èœã¯ãçç£èšç»å ã®ããŸããŸãªåéã«å¿çšãããŠããŸãã
1. éèŠäºæž¬
æ£ç¢ºãªéèŠäºæž¬ã¯ã广çãªçç£èšç»ã®åºç€ã§ããPythonã«ãããè£œé æ¥è ã¯éå»ã®è²©å£²ããŒã¿ãåžå Žãã¬ã³ããå€éšèŠå ãæŽ»çšããŠå°æ¥ã®éèŠãäºæž¬ã§ããŸããæç³»ååæãååž°ã¢ãã«ããã¥ãŒã©ã«ãããã¯ãŒã¯ãªã©ã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ããéèŠäºæž¬ã«äžè¬çã«äœ¿çšãããŸããPandasãScikit-learnãStatsmodelsãªã©ã®ã©ã€ãã©ãªã¯ããã®ããã»ã¹ã§éåžžã«äŸ¡å€ããããŸããäžçã®ã¢ãã¬ã«æ¥çãèããŠã¿ãŸããããH&MãZaraã®ãããªäŒæ¥ã¯ãå£ç¯æ§ããã¡ãã·ã§ã³ã®ãã¬ã³ããããã³ãããã®åžå Žåºæã®çµæžææšãèæ ®ããŠãããŸããŸãªå°åã«ãããããŸããŸãªè¡£æåã©ã€ã³ã®éèŠãäºæž¬ããããã«Pythonã䜿çšã§ããŸããããã«ãããåšåº«ç®¡çãæé©åãããç¡é§ãåæžãããŸãã
2. çç£ã¹ã±ãžã¥ãŒãªã³ã°
çç£ã¹ã±ãžã¥ãŒãªã³ã°ã¯ãæ©æ¢°ãäœæ¥å¡ãžã®ã¿ã¹ã¯ã®å²ãåœãŠããªãã¬ãŒã·ã§ã³ã®é åºã®æé©åãããã³æ³šæã®ã¿ã€ã ãªãŒãªå®äºã®ç¢ºä¿ã䌎ããŸããPuLPãOR-Toolsãªã©ã®Pythonã®æé©åã©ã€ãã©ãªã¯ããã®ç®çã«ç¹ã«é©ããŠããŸãããããã®ã©ã€ãã©ãªã¯ãæ©æ¢°ã®èœåããªãœãŒã¹ã®å¯çšæ§ãããã³ææ¥ãªã©ã®å¶çŽãèæ ®ããè€éãªã¹ã±ãžã¥ãŒãªã³ã°åé¡ã解決ã§ããŸããããšãã°ãããšã¿ããã©ã«ã¯ã¹ã¯ãŒã²ã³ãªã©ã®ã°ããŒãã«èªåè»ã¡ãŒã«ãŒã¯ãè€æ°ã®å·¥å Žã«ãããè€æ°ã®è»çš®ã®çç£ã¹ã±ãžã¥ãŒã«ãæé©åããããã«Pythonã䜿çšããçç£ã³ã¹ããšãªãŒãã¿ã€ã ãæå°éã«æããããšãã§ããŸãããã®ã·ã¹ãã ã¯ãçµç«ã©ã€ã³ã®å¶çŽãã³ã³ããŒãã³ãã®å¯çšæ§ãããã³çŽåã¹ã±ãžã¥ãŒã«ãèæ ®ããŠãæé©ãªçç£èšç»ãç«ãŠãŸããããã¯ãéåžžã«è€éãªã°ããŒãã«ãªãã¬ãŒã·ã§ã³ã«ãããé å»¶ã®æå°åãšçç£éã®æå€§åã«äžå¯æ¬ ã§ãã
3. ãªãœãŒã¹é å
å¹ççãªãªãœãŒã¹é åã¯ãçç£æ§ã®æå€§åãšã³ã¹ãã®æå°åã«äžå¯æ¬ ã§ããPythonã¯ãåææãåŽååãæ©æ¢°ã®ãªãœãŒã¹é åãæé©åããããã«äœ¿çšã§ããŸããç·åœ¢èšç»æ³ããã®ä»ã®æé©åæè¡ãé©çšããŠãåçç£å®è¡ã«æé©ãªãªãœãŒã¹ã®çµã¿åãããæ±ºå®ã§ããŸããããšãã°ãNestleãUnileverã®ãããªé£åå å·¥äŒç€Ÿã¯ãã³ã¹ããå¯çšæ§ãããã³è³å³æéãªã©ã®èŠå ãèæ ®ããŠãããŸããŸãªè£œåã©ã€ã³ã«ãããåææãšå è£ è³æã®é åãæé©åããããã«Pythonã䜿çšããå ŽåããããŸãããã®æé©åã«ããããªãœãŒã¹ã广çã«å©çšãããåœéçãªãµãã©ã€ãã§ãŒã³å šäœã§ã®äžè¶³ãç¡é§ã鲿¢ãããŸãã
4. åšåº«ç®¡ç
广çãªåšåº«ç®¡çã¯ãä¿ç®¡ã³ã¹ãã®æå°åãšåšåº«åãã®åé¿ã«äžå¯æ¬ ã§ããPythonã¯ãåšåº«ã¬ãã«ãåæããéèŠãäºæž¬ããæ³šæã¹ã±ãžã¥ãŒã«ãæé©åããããã«äœ¿çšã§ããŸããã·ã§ããããã¢ããã®ãªã¢ã«ã¿ã€ã ããŒã¿ãšçµ±åããããšã§ãPythonã¯åšåº«ã¬ãã«ã«é¢ããææ°ã®æŽå¯ãæäŸããããã¢ã¯ãã£ããªæææ±ºå®ãå¯èœã«ããŸããäžçäžã§äºæ¥ãå±éãã補è¬äŒç€ŸãèããŠã¿ãŸãããã圌ãã¯ãå£ç¯çãªç æ°ãå°ççãªããŒãºã«åºã¥ããéèŠäºæž¬ã«ãããäžçäžã®æµéã»ã³ã¿ãŒã®ããŸããŸãªå»è¬åã®åšåº«ã远跡ããããã«Pythonã䜿çšã§ããŸããããã«ãããéèŠãªå»è¬åãå¿ èŠãªå Žæã§å©çšå¯èœã«ãªããäŸçµŠäžæã®ãªã¹ã¯ã軜æžãããŸãã
5. 容éèšç»
容éèšç»ã¯ãäºæž¬ãããéèŠãæºããããã«å¿ èŠãªçç£èœåãæ±ºå®ããããšãå«ã¿ãŸããPythonã¯ãéå»ã®çç£ããŒã¿ãåæããããã«ããã¯ãç¹å®ããããŸããŸãªçç£ã·ããªãªãã¢ãã«åããããã«äœ¿çšã§ããŸããããã«ãããè£œé æ¥è ã¯çç£èœåãæé©åãããªãœãŒã¹ã®éå°ãŸãã¯éå°ãªå©çšãåé¿ã§ããŸããäŸãšããŠã¯ãSamsungãAppleãªã©ã®ã°ããŒãã«é»åæ©åšã¡ãŒã«ãŒãæããããŸãã圌ãã¯ãã°ããŒãã«ãªçç£èœåãæé©åããé«äŸ¡ãªããŠã³ã¿ã€ã ãåé¿ããããã«ãã³ã³ããŒãã³ãã®å¯çšæ§ãéèŠäºæž¬ãããã³çç£ã©ã€ã³ã®èœåãªã©ã®èŠå ãèæ ®ããŠãããŸããŸãªå·¥å Žã§ã®ã³ã³ããŒãã³ã補é ã«å¿ èŠãªèœåãè©äŸ¡ããããã«PythonãæŽ»çšããå ŽåããããŸãã
6. ãµãã©ã€ãã§ãŒã³æé©å
Pythonã¯ããµãã©ã€ãã§ãŒã³ç®¡çã·ã¹ãã ãšçµ±åããŠãåææãã³ã³ããŒãã³ããããã³å®æåã®ãããŒãæé©åã§ããŸããããã«ã¯ããµãã©ã€ã€ãŒã®ããã©ãŒãã³ã¹ãåæããæœåšçãªæ··ä¹±ãç¹å®ãã茞éã«ãŒããæé©åããããšãå«ãŸããŸããããšãã°ãCoca-ColaãPepsiCoã®ãããªå€åœç±é£²æäŒç€ŸãèããŠã¿ãŸãããã圌ãã¯ãã³ã¹ãå¹çãç¶æããããŸããŸãªå°åã§ã®ãµãã©ã€ãã§ãŒã³ã®æ··ä¹±ãé²ãããã«ã茞éã³ã¹ãããµãã©ã€ã€ãŒã®ä¿¡é Œæ§ãããã³å°æ¿åŠçãªã¹ã¯ãªã©ã®èŠå ãèæ ®ããŠãåææã®èª¿éãã宿åã®æµéãŸã§ãã°ããŒãã«ãµãã©ã€ãã§ãŒã³ãæé©åããããã«Pythonãå©çšããå ŽåããããŸãã
7. 補é å®è¡ã·ã¹ãã ïŒMESïŒçµ±å
Pythonã¯ã補é å®è¡ã·ã¹ãã ïŒMESïŒãšçµ±åããŠãçç£ããã»ã¹ãžã®ãªã¢ã«ã¿ã€ã ã®å¯èŠæ§ãæäŸã§ããŸããããã«ãããäœæ¥æç€ºæžã®è¿œè·¡ãæ©æ¢°ã®ããã©ãŒãã³ã¹ã®ç£èŠãã»ã³ãµãŒããã®ããŒã¿ã®ãã£ããã£ãªã©ãçç£æŽ»åã®ç£èŠãšå¶åŸ¡ãå¯èœã«ãªããŸããPythonã䜿çšããŠMESãšçµ±åããããšã«ãããè£œé æ¥è ã¯ãªã¢ã«ã¿ã€ã ã§çç£ãç£èŠããã³å¶åŸ¡ã§ããŸããããšãã°ãBoeingãAirbusã®ãããªã°ããŒãã«èªç©ºæ©ã¡ãŒã«ãŒã¯ãMESãšPythonãçµ±åããŠçç£æ®µéãç£èŠããè³æã®æµãã远跡ããå質管çã確ä¿ã§ããŸããããã«ãããçç£ã®é²æç¶æ³ããªã¢ã«ã¿ã€ã ã§è¿œè·¡ããæ¬ é¥ã®æ€åºãè¿ éåããè€éãªè£œé ãªãã¬ãŒã·ã§ã³å šäœã®å šäœçãªå¹çãåäžãããããšãã§ããŸãã
å®è·µçãªäŸãšã±ãŒã¹ã¹ã¿ãã£
ããŸããŸãªç£æ¥ãã°ããŒãã«ãªæèã§ã®çç£èšç»ã«ãããPythonã®äœ¿ç𿹿³ã®å®éçãªäŸãããã€ã玹ä»ããŸãã
- èªåè»ç£æ¥: BMWãTeslaã®ãããªäŒæ¥ã¯ãçç£ã¹ã±ãžã¥ãŒãªã³ã°ãçµç«ã©ã€ã³ã®å¹çæé©åãããã³äºæž¬ã¡ã³ããã³ã¹ã¢ãã«ã䜿çšããæ©åšã®æ éäºæž¬ã«Pythonã䜿çšããŠããŸãã
- èªç©ºå®å®ç£æ¥: Airbusã¯ããµãã©ã€ãã§ãŒã³æé©åãè³æç®¡çãããã³éèŠäºæž¬ã«Pythonã䜿çšããŠããŸãã
- é£åã»é£²æç£æ¥: Nestleã¯ãã°ããŒãã«ãªå·¥å Žã®ãããã¯ãŒã¯å šäœã§ãåšåº«ç®¡çãéèŠäºæž¬ãããã³çç£èšç»ã«Pythonã䜿çšããŠããŸãã
- 補è¬ç£æ¥: ã°ããŒãã«ãªè£œè¬äŒç€Ÿã¯ãåœéçãªãã«ã¹ã±ã¢ã·ã¹ãã å šäœã§åšåº«ã¬ãã«ã管çããå»è¬åã®åºè·ã远跡ããéèŠãäºæž¬ããããã«Pythonã䜿çšããŠããŸãã
- é»åæ©åšè£œé : Foxconnã®ãããªäŒæ¥ã¯ãçç£ã©ã€ã³ã®ããã©ãŒãã³ã¹æé©åãšè€éãªã°ããŒãã«ãµãã©ã€ãã§ãŒã³ã®ç®¡çã«PythonãæŽ»çšããŠããŸãã
ãããã®äŸã¯ãçŸä»£ã®è£œé æ¥ã«ãããPythonã®åºç¯ãªé©çšæ§ãšé倧ãªå©ç¹ã瀺ããŠãããã°ããŒãã«äŒæ¥ã«ç«¶äºäžã®åªäœæ§ããããããŠããŸãã
PythonããŒã¹ã®çç£èšç»ã·ã¹ãã ã®å°å ¥
PythonããŒã¹ã®çç£èšç»ã·ã¹ãã ãå°å ¥ããã«ã¯ãããã€ãã®éèŠãªã¹ããããå«ãŸããŸãã
- èŠä»¶å®çŸ©: ãµããŒãããã補é ããã»ã¹ãåžæãããèªååã¬ãã«ãçµ±åãããããŒã¿ãœãŒã¹ãªã©ãã·ã¹ãã ã®ç¹å®ã®ããŒãºãšç®æšãæç¢ºã«å®çŸ©ããŸãã
- ããŒã¿åéãšæºå: ERPã·ã¹ãã ãMESãã»ã³ãµãŒãå€éšããŒã¿ããŒã¹ãªã©ã®ããŸããŸãªãœãŒã¹ããå¿ èŠãªããŒã¿ãåéããã³æºåããŸããããã«ã¯ãå€ãã®å ŽåãããŒã¿ã®ã¯ãªãŒãã³ã°ã倿ãããã³æ€èšŒãå«ãŸããŸãã
- ã¢ãã«éçº: éèŠäºæž¬ãçç£ã¹ã±ãžã¥ãŒãªã³ã°ããªãœãŒã¹é åãªã©ã®èšç»æ©èœã®ããã«Pythonã¢ãã«ãéçºããŸããé©åãªæ©æ¢°åŠç¿ããã³æé©åã¢ã«ãŽãªãºã ãæŽ»çšããŸãã
- ã·ã¹ãã çµ±å: APIããã³ããŒã¿ã³ãã¯ã¿ã䜿çšããŠãPythonã¢ãã«ãæ¢åã®ã·ã¹ãã ïŒERPãMESãªã©ïŒãšçµ±åããŸãã
- ãŠãŒã¶ãŒã€ã³ã¿ãŒãã§ãŒã¹éçº: ããã·ã¥ããŒããã¬ããŒããå¯èŠåããŒã«ãªã©ãã·ã¹ãã ã«ã¢ã¯ã»ã¹ããã³æäœããããã®ãŠãŒã¶ãŒãã¬ã³ããªãŒãªã€ã³ã¿ãŒãã§ãŒã¹ãäœæããŸãã
- ãã¹ããšæ€èšŒ: ã·ã¹ãã ã®ç²ŸåºŠãä¿¡é Œæ§ãããã©ãŒãã³ã¹ã確ä¿ããããã«åŸ¹åºçã«ãã¹ãããŸããå®éã®ããŒã¿ã«å¯ŸããŠçµæãæ€èšŒããŸãã
- å±éãšãã¬ãŒãã³ã°: ã·ã¹ãã ãå±éããé¢é£ããæ åœè ã«ãã¬ãŒãã³ã°ãæäŸããŸãã
- ç¶ç¶çãªã¡ã³ããã³ã¹ãšæé©å: ç²ŸåºŠãšæå¹æ§ãç¶æããããã«ãå¿ èŠã«å¿ããŠã¢ãã«ãšã¢ã«ãŽãªãºã ãæŽæ°ããªãããã·ã¹ãã ãç¶ç¶çã«ç£èŠããã³æé©åããŸãã
課é¡ãšèæ ®äºé
Pythonã¯å€§ããªå©ç¹ãæäŸããŸãããèæ ®ãã¹ãããã€ãã®èª²é¡ããããŸãã
- ããŒã¿å質: ã·ã¹ãã ã®ç²ŸåºŠã¯ãããŒã¿ã®å質ã«å€§ããäŸåããŸããããŒã¿ã®ç²ŸåºŠãšå®å šæ§ã確ä¿ããããšãäžå¯æ¬ ã§ãã
- çµ±åã®è€éã: Pythonãæ¢åã®ã·ã¹ãã ãšçµ±åããããšã¯è€éã«ãªãå¯èœæ§ããããæ éãªèšç»ãšå®è¡ãå¿ èŠã§ãã
- ã¹ãã«ã®ã£ãã: PythonãããŒã¿ãµã€ãšã³ã¹ã補é ããã»ã¹ã«é¢ããå°éç¥èãå¿ èŠã«ãªãå ŽåããããŸãããã¬ãŒãã³ã°ãžã®æè³ãŸãã¯çµéšè±å¯ãªå°éå®¶ã®æ¡çšãå¿ èŠã«ãªãå ŽåããããŸãã
- ã»ãã¥ãªãã£: æ©å¯ããŒã¿ãä¿è·ããäžæ£ã¢ã¯ã»ã¹ãé²ãããã«ãã»ãã¥ãªãã£å¯Ÿçãå®è£ ããããšãäžå¯æ¬ ã§ãã
- ã¹ã±ãŒã©ããªãã£: ã·ã¹ãã ãå¢å ããããŒã¿éãšé²åããããžãã¹ããŒãºã«å¯Ÿå¿ã§ããããã«ã¹ã±ãŒãªã³ã°ã§ããããšã確èªããŸãã
è£œé æ¥ã«ãããPythonã®æªæ¥
è£œé æ¥ã«ãããPythonã®æªæ¥ã¯æããã§ããã€ã³ãã¹ããªãŒ4.0ãé²åãç¶ããã«ã€ããŠãPythonã¯ããã«éèŠãªåœ¹å²ãæããã§ãããã以äžã®ãããªãã®ãç»å ŽããŸãã
- 人工ç¥èœïŒAIïŒã𿩿¢°åŠç¿ïŒMLïŒ: Pythonã¯ãããé«åºŠãªAIé§åã®èšç»ããã³æé©åã·ã¹ãã ãéçºããæåç·ã«ç«ã€ã§ãããã
- ããžã¿ã«ãã€ã³: Pythonã¯ãããžã¿ã«ãã€ã³ã䜿çšããŠçç£ããã»ã¹ãã·ãã¥ã¬ãŒãããã³åæããããã«äœ¿çšãããŸãã
- ãšããžã³ã³ãã¥ãŒãã£ã³ã°: Pythonã¯ããããã¯ãŒã¯ã®ãšããžã§ãªã¢ã«ã¿ã€ã ã«ããŒã¿ãåŠçããããã«äœ¿çšãããããé«éã§å¿çæ§ã®é«ãæææ±ºå®ãå¯èœã«ããŸãã
- èªååãšããããå·¥åŠã®å¢å : Pythonã¯ãããããå·¥åŠãšèªååã·ã¹ãã ãå¶åŸ¡ããçç£å¹çãšç²ŸåºŠãåäžãããŸãã
- ã¯ã©ãŠãã³ã³ãã¥ãŒãã£ã³ã°: ã¯ã©ãŠãããŒã¹ã®Pythonãœãªã¥ãŒã·ã§ã³ãããäžè¬çã«ãªããã¹ã±ãŒã©ããªãã£ãã¢ã¯ã»ã·ããªãã£ãããã³è²»çšå¯Ÿå¹æãæäŸããŸãã
Pythonã®é²åãçµ±åãããã³ãã¯ãããžãŒã®æ¥éãªé²æ©ãžã®é©å¿èœåã¯ããããäžçäžã®çç£èšç»ã®æªæ¥ã®äžå¿çãªæ±ã§ããç¶ããããšãä¿èšŒããŸããPythonãæ¡çšããäŒæ¥ã¯ã倧ããªç«¶äºäžã®åªäœæ§ãåŸãã®ã«æãé©ããäœçœ®ã«ããŸãã
çµè«
Pythonã¯ãçç£èšç»ã·ã¹ãã ãå€é©ã§ãã匷åã§æ±çšæ§ã®é«ãããŒã«ã§ãããã®èœåãæŽ»çšããããšã§ãè£œé æ¥è ã¯å¹çãæé©åããã³ã¹ããåæžããå¿çæ§ãåäžããã倧ããªç«¶äºåªäœæ§ãç²åŸã§ããŸããã€ã³ãã¹ããªãŒ4.0ãè£œé æ¥ã®æ§çžã圢äœãç¶ããã«ã€ããŠãPythonã¯ã€ãããŒã·ã§ã³ãæšé²ããã°ããŒãã«ã¡ãŒã«ãŒãæåããããã®åœ¹å²ããŸããŸãéèŠãªãã®ã«ããŠããã§ããããPythonããŒã¹ã®ãœãªã¥ãŒã·ã§ã³ã®æ¡çšã¯ãäžçäžã®è£œé æ¥è ããªãã¬ãŒã·ã§ã³ãæé©åããåžå Žã®å€åã«é©å¿ãããŸããŸãç«¶äºã®æ¿ããã°ããŒãã«åžå Žã§ã®å°äœã確ä¿ããããšãå¯èœã«ããŸãã