顧客ããŒã¿ã®åãè§£ãæŸã¡ãŸãããããã®å æ¬çãªã¬ã€ãã§ã¯ãã¿ãŒã²ãããçµã£ãããŒã±ãã£ã³ã°ãšåŒ·åãããããžãã¹æŠç¥ã®ããã«ãPythonããŒã¹ã®é¡§å®¢ã»ã°ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ïŒK-MeansãDBSCANãéå±€çã¯ã©ã¹ã¿ãªã³ã°ãªã©ïŒãæ¢æ±ããŸãã
Python顧客åæïŒã»ã°ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ã®è©³çŽ°ãªæ¢æ±
仿¥ã®ãã€ããŒã³ãã¯ããããªã°ããŒãã«åžå Žã«ãããŠãäŒæ¥ã¯ãããŸã§ä»¥äžã«å€æ§ã§ãã€ãããã¯ãªé¡§å®¢åºç€ã«å¯Ÿå¿ããŠããŸããããŒã±ãã£ã³ã°ã補åéçºãã«ã¹ã¿ããŒãµãŒãã¹ã«å¯Ÿããç»äžçãªã¢ãããŒãã¯å¹æããªãã ãã§ãªããç¡èŠãããããã®ã¬ã·ãã§ããæç¶å¯èœãªæé·ãšæ°žç¶çãªé¡§å®¢é¢ä¿ãæ§ç¯ããããã®éµã¯ãèŽè¡ãããæ·±ãçè§£ããããšã«ãããŸããã€ãŸããåäžã®ãšã³ãã£ãã£ãšããŠã§ã¯ãªããç¬èªã®ããŒãºãè¡åã奜ã¿ãæã€ç°ãªãã°ã«ãŒããšããŠçè§£ããããšã§ããããã顧客ã»ã°ã¡ã³ããŒã·ã§ã³ã®æ¬è³ªã§ãã
ãã®å æ¬çãªã¬ã€ãã§ã¯ãããŒã¿ãµã€ãšã³ã¹ã®äžçããªãŒãããããã°ã©ãã³ã°èšèªã§ããPythonã®åãæŽ»çšããŠãæŽç·Žãããã»ã°ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ãå®è£ ããæ¹æ³ãæ¢ããŸããçè«ãè¶ ããŠãçã®ããŒã¿ãå®è¡å¯èœãªããžãã¹ã€ã³ããªãžã§ã³ã¹ã«å€ããäžçäžã®é¡§å®¢ã«é¿ãããã¹ããŒããªããŒã¿é§ååã®æææ±ºå®ãå¯èœã«ããå®çšçãªã¢ããªã±ãŒã·ã§ã³ãæãäžããŸãã
ãªã顧客ã»ã°ã¡ã³ããŒã·ã§ã³ãã°ããŒãã«ããžãã¹ã®å¿ é äºé ãªã®ã
顧客ã»ã°ã¡ã³ããŒã·ã§ã³ã¯ãäŒæ¥ã®é¡§å®¢åºç€ãå ±éã®ç¹æ§ã«åºã¥ããŠã°ã«ãŒãã«åå²ããææ³ã§ãããããã®ç¹æ§ã¯ã人å£çµ±èšïŒå¹Žéœ¢ãå ŽæïŒãå¿ççµ±èšïŒã©ã€ãã¹ã¿ã€ã«ã䟡å€èгïŒãè¡åïŒè³Œå ¥å±¥æŽãæ©èœã®äœ¿çšç¶æ³ïŒããŸãã¯ããŒãºããŒã¹ã§ããããããããšã§ãäŒæ¥ã¯äžè¬çãªã¡ãã»ãŒãžããããŒããã£ã¹ãããã®ããããæå³ã®ããäŒè©±ãå§ããããšãã§ããŸãããã®å©ç¹ã¯æ·±ããæ¥çãå°åã«é¢ä¿ãªãæ®éçã«é©çšã§ããŸãã
- ããŒãœãã©ã€ãºãããããŒã±ãã£ã³ã°ïŒåäžã®ããŒã±ãã£ã³ã°ãã£ã³ããŒã³ã®ä»£ããã«ãåã»ã°ã¡ã³ãã«åãããŠèª¿æŽãããã¡ãã»ãŒãžããªãã¡ãŒãã³ã³ãã³ããèšèšã§ããŸããé«çŽå°å£²ãã©ã³ãã¯ãé«é¡æ¶è²»ã»ã°ã¡ã³ãã«éå®ãã¬ãã¥ãŒãæäŸããäŸ¡æ Œã«ææãªã»ã°ã¡ã³ãã«ã¯å£ç¯éå®ã»ãŒã«ã®ãç¥ããã§å¯Ÿå¿ãããããããŸããã
- é¡§å®¢ç¶æçã®åäžïŒè¡åïŒè³Œå ¥é »åºŠã®æžå°ãªã©ïŒã«åºã¥ããŠãªã¹ã¯ã®ãã顧客ãç¹å®ããããšã§ãè§£çŽãããåã«ã¿ãŒã²ãããçµã£ãåãšã³ã²ãŒãžã¡ã³ããã£ã³ããŒã³ãç©æ¥µçã«éå§ããŠã顧客ãåãæ»ãããšãã§ããŸãã
- æé©åããã補åéçºïŒæã䟡å€ã®ããã»ã°ã¡ã³ãã«ã¢ããŒã«ããæ©èœãçè§£ããããšã§ã補åããŒããããã®åªå é äœãä»ããããšãã§ããŸãããœãããŠã§ã¢äŒç€Ÿã¯ãé«åºŠãªæ©èœãã倧ããªæ©æµãåããããã¯ãŒãŠãŒã¶ãŒãã»ã°ã¡ã³ããçºèŠããéçºæè³ãæ£åœåãããããããŸããã
- æŠç¥çãªãªãœãŒã¹é åïŒãã¹ãŠã®é¡§å®¢ãçããåçæ§ãé«ãããã§ã¯ãããŸãããã»ã°ã¡ã³ããŒã·ã§ã³ã¯ãæã䟡å€ã®ãã顧客ïŒMVCïŒãç¹å®ããã®ã«åœ¹ç«ã¡ãããŒã±ãã£ã³ã°äºç®ãå¶æ¥åªåãããã³ãã¬ãã¢ã ãµããŒããµãŒãã¹ããæè³ã«å¯Ÿããæãé«ããªã¿ãŒã³ãçã¿åºãå Žæã«éäžãããããšãã§ããŸãã
- 匷åããã顧客äœéšïŒé¡§å®¢ãçè§£ãããŠãããšæãããšããã©ã³ããšã®äœéšãåçã«åäžããŸããããã«ããããã€ã€ãªãã£ãæ§ç¯ãããããããæåã«ãããŠåŒ·åãªããŒã±ãã£ã³ã°ããŒã«ã§ããè¯å®çãªå£ã³ããä¿é²ãããŸãã
åºç€ã®æ§ç¯ïŒå¹æçãªã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã®ããŒã¿æºå
ã»ã°ã¡ã³ããŒã·ã§ã³ãããžã§ã¯ãã®æåã¯ãã¢ã«ãŽãªãºã ã«å ¥åããããŒã¿ã®å質ã«ããã£ãŠããŸããããã¿ãå ¥ãããšããã¿ãåºãããšããååã¯ãããã§ç¹ã«åœãŠã¯ãŸããŸããã¯ã©ã¹ã¿ãªã³ã°ã«ã€ããŠèããåã«ãPythonã®åŒ·åãªããŒã¿æäœã©ã€ãã©ãªã䜿çšããŠãå³å¯ãªããŒã¿æºåãã§ãŒãºã宿œããå¿ èŠããããŸãã
ããŒã¿æºåã®äž»èŠãªæé ïŒ
- ããŒã¿åéïŒããŸããŸãªãœãŒã¹ããããŒã¿ãåéããŸããeã³ããŒã¹ãã©ãããã©ãŒã ããã®ãã©ã³ã¶ã¯ã·ã§ã³ã¬ã³ãŒããã¢ããªã±ãŒã·ã§ã³ããã®äœ¿çšãã°ããµã€ã³ã¢ãããã©ãŒã ããã®äººå£çµ±èšæ å ±ãããã³ã«ã¹ã¿ããŒãµããŒãã®ããåãã
- ããŒã¿ã¯ã¬ã³ãžã³ã°ïŒããã¯éèŠãªã¹ãããã§ããæ¬ æå€ã®åŠçïŒããšãã°ãå¹³åå€ãŸãã¯äžå€®å€ã®è£å®ïŒãäžæŽåã®ä¿®æ£ïŒããšãã°ããUSAããšãUnited StatesãïŒãããã³éè€ãšã³ããªã®åé€ãå«ãŸããŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒããã¯ããŒã¿ãµã€ãšã³ã¹ã®åµé çãªéšåã§ããæ¢åã®ããŒã¿ãããããå€ãã®æ å ±ãæäŸããæ°ããç¹åŸŽãäœæããããšã§ããããšãã°ãé¡§å®¢ã®æåã®è³Œå ¥æ¥ã䜿çšãã代ããã«ãã顧客åšç±æéãã®ç¹åŸŽãèšèšã§ããŸãããŸãã¯ããã©ã³ã¶ã¯ã·ã§ã³ããŒã¿ãããã平忳šæé¡ããšãè³Œå ¥é »åºŠããèšç®ã§ããŸãã
- ããŒã¿ã¹ã±ãŒãªã³ã°ïŒã»ãšãã©ã®ã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã¯è·é¢ããŒã¹ã§ããããã¯ãã¹ã±ãŒã«ã倧ããç¹åŸŽã¯çµæã«äžåè¡¡ãªåœ±é¿ãäžããå¯èœæ§ãããããšãæå³ããŸããããšãã°ãã幎霢ãïŒ18ã80ã®ç¯å²ïŒãšãåå ¥ãïŒ20,000ã200,000ã®ç¯å²ïŒãããå Žåãåå ¥ã®ç¹åŸŽãè·é¢èšç®ãæ¯é ããŸããç¹åŸŽãåæ§ã®ç¯å²ã«ã¹ã±ãŒãªã³ã°ããïŒããšãã°ãScikit-learnã®`StandardScaler`ãŸãã¯`MinMaxScaler`ã䜿çšããïŒããšã¯ãæ£ç¢ºãªçµæãåŸãããã«äžå¯æ¬ ã§ãã
顧客åæã®ããã®PythonicããŒã«ããã
Pythonã®ãšã³ã·ã¹ãã ã¯é¡§å®¢åæã«æé©ã§ãããããŒã¿ã©ã³ã°ãªã³ã°ããã¢ãã«æ§ç¯ãèŠèŠåãŸã§ãããã»ã¹å šäœãåçåããå ç¢ãªãªãŒãã³ãœãŒã¹ã©ã€ãã©ãªã®ã¹ã€ãŒããæäŸããŸãã
- PandasïŒããŒã¿æäœãšåæã®åºç€ãPandasã¯ã衚圢åŒããŒã¿ã®åŠçãã¯ã¬ã³ãžã³ã°ãããã³è€éãªå€æã®å®è¡ã«æé©ãªDataFrameãªããžã§ã¯ããæäŸããŸãã
- NumPyïŒPythonã§ã®ç§åŠèšç®ã®åºæ¬çãªããã±ãŒãžãå€§èŠæš¡ãªå€æ¬¡å é åãšè¡åã®ãµããŒããããã³é«åºŠãªæ°åŠé¢æ°ã®ã³ã¬ã¯ã·ã§ã³ãæäŸããŸãã
- Scikit-learnïŒPythonã§ã®æ©æ¢°åŠç¿ã®ããã®é Œãã«ãªãã©ã€ãã©ãªãããŒã¿ãã€ãã³ã°ãšããŒã¿åæã®ããã®ã·ã³ãã«ã§å¹ççãªããŒã«ã®å¹ åºãç¯å²ãæäŸããè°è«ãããã¹ãŠã®ã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã®å®è£ ãå«ãŸããŠããŸãã
- Matplotlib & SeabornïŒãããã¯ããŒã¿èŠèŠåã®ããã®æé«ã®ã©ã€ãã©ãªã§ããMatplotlibã¯ãããŸããŸãªéçãã¢ãã¡ãŒã·ã§ã³ãããã³ã€ã³ã¿ã©ã¯ãã£ããªãããããäœæããããã®äœã¬ãã«ã€ã³ã¿ãŒãã§ã€ã¹ãæäŸããSeabornã¯ããã«åºã¥ããŠæ§ç¯ãããé åçã§æ å ±éã®å€ãçµ±èšã°ã©ãã£ãã¯ã¹ãæç»ããããã®é«ã¬ãã«ã€ã³ã¿ãŒãã§ã€ã¹ãæäŸããŸãã
Pythonã䜿çšããã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã®è©³çŽ°ãªæ¢æ±
ã¯ã©ã¹ã¿ãªã³ã°ã¯ãæåž«ãªãæ©æ¢°åŠç¿ã®äžçš®ã§ãããã¢ã«ãŽãªãºã ã«äºåã©ãã«ä»ããããçµæãæäŸããªãããšãæå³ããŸãã代ããã«ãããŒã¿ãæäŸããç¬èªã®åºæã®æ§é ãšã°ã«ãŒãåãèŠã€ããããã«äŸé ŒããŸããããã¯é¡§å®¢ã»ã°ã¡ã³ããŒã·ã§ã³ã«æé©ã§ãããç§ãã¡ãååšãç¥ããªãã£ãèªç¶ãªã°ã«ãŒãåãçºèŠããããšèããŠããŸãã
K-Meansã¯ã©ã¹ã¿ãªã³ã°ïŒã»ã°ã¡ã³ããŒã·ã§ã³ã®äž»å
K-Meansã¯ãæã人æ°ããããç°¡åãªã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã®1ã€ã§ããå芳枬å€ãæãè¿ãå¹³åïŒã¯ã©ã¹ã¿ãŒéå¿ïŒãæã€ã¯ã©ã¹ã¿ãŒã«å±ãã`n`åã®èŠ³æž¬å€ã`k`åã®ã¯ã©ã¹ã¿ãŒã«åå²ããããšãç®çãšããŠããŸãã
ä»çµã¿ïŒ
- KãéžæïŒæåã«äœæããã¯ã©ã¹ã¿ãŒã®æ°ïŒ`k`ïŒãæå®ããå¿ èŠããããŸãã
- éå¿ãåæåïŒã¢ã«ãŽãªãºã ã¯ãããŒã¿ç©ºéã«`k`åã®éå¿ãã©ã³ãã ã«é 眮ããŸãã
- ãã€ã³ãã®å²ãåœãŠïŒåããŒã¿ãã€ã³ãã¯ãæãè¿ãéå¿ã«å²ãåœãŠãããŸãã
- éå¿ã®æŽæ°ïŒåéå¿ã®äœçœ®ã¯ãããã«å²ãåœãŠããããã¹ãŠã®ããŒã¿ãã€ã³ãã®å¹³åãšããŠåèšç®ãããŸãã
- ç¹°ãè¿ãïŒéå¿ãå€§å¹ ã«ç§»åããªããªããŸã§ãã¯ã©ã¹ã¿ãŒãå®å®ãããŸã§ãæé 3ãš4ãç¹°ãè¿ãããŸãã
é©åãªãKãã®éžæ
K-Meansã®æå€§ã®èª²é¡ã¯ã`k`ãäºåã«éžæããããšã§ãããã®æ±ºå®ãå°ãããã®2ã€ã®äžè¬çãªæ¹æ³ã¯æ¬¡ã®ãšããã§ãã
- ãšã«ããŒæ³ïŒããã«ã¯ã`k`ã®å€ã®ç¯å²ã§K-Meansãå®è¡ããããããã«å¯ŸããŠã¯ã©ã¹ã¿ãŒå å¹³æ¹åïŒWCSSïŒãããããããããšãå«ãŸããŸããããããã¯éåžžãè ã®ããã«èŠããWCSSã®æžå°çãäœäžããããšã«ããŒããã€ã³ãã¯ãå€ãã®å Žåãæé©ãª`k`ãšèŠãªãããŸãã
- ã·ã«ãšããã¹ã³ã¢ïŒãã®ã¹ã³ã¢ã¯ããªããžã§ã¯ããä»ã®ã¯ã©ã¹ã¿ãŒãšæ¯èŒããŠãç¬èªã®ã¯ã©ã¹ã¿ãŒã«ã©ãã ãé¡äŒŒããŠããããæž¬å®ããŸãã+1ã«è¿ãã¹ã³ã¢ã¯ããªããžã§ã¯ããç¬èªã®ã¯ã©ã¹ã¿ãŒã«ããäžèŽãã飿¥ããã¯ã©ã¹ã¿ãŒã«ã¯ããŸãäžèŽããŠããªãããšã瀺ããŸãã`k`ã®ããŸããŸãªå€ã«ã€ããŠå¹³åã·ã«ãšããã¹ã³ã¢ãèšç®ããæãé«ãã¹ã³ã¢ãæã€ãã®ãéžæã§ããŸãã
K-Meansã®é·æãšçæ
- é·æïŒèšç®å¹çãé«ããå€§èŠæš¡ãªããŒã¿ã»ããã«ã¹ã±ãŒã©ãã«ãçè§£ãšå®è£ ãç°¡åã
- çæïŒäºåã«ã¯ã©ã¹ã¿ãŒã®æ°ïŒ`k`ïŒãæå®ããå¿ èŠããããŸããéå¿ã®åæé çœ®ã«ææã§ããéç圢ã®ã¯ã©ã¹ã¿ãŒããµã€ãºãšå¯åºŠãç°ãªãã¯ã©ã¹ã¿ãŒã«ã¯èŠåŽããŸãã
éå±€çã¯ã©ã¹ã¿ãªã³ã°ïŒé¡§å®¢ã®å®¶ç³»å³ã®æ§ç¯
ååã瀺ãããã«ãéå±€çã¯ã©ã¹ã¿ãªã³ã°ã¯ã¯ã©ã¹ã¿ãŒã®éå±€ãäœæããŸããæãäžè¬çãªã¢ãããŒãã¯åéçã§ãããåããŒã¿ãã€ã³ãã¯ç¬èªã®ã¯ã©ã¹ã¿ãŒã§éå§ããã¯ã©ã¹ã¿ãŒã®ãã¢ã¯éå±€ãäžã«ç§»åããã«ã€ããŠ1ã€ã«ããŒãžãããŸãã
ä»çµã¿ïŒ
ãã®ã¡ãœããã®äž»ãªåºåã¯ãããŒãžãŸãã¯åå²ã®ã·ãŒã±ã³ã¹ãèšé²ããããªãŒç¶ã®å³ã§ãããã³ããã°ã©ã ã§ãããã³ããã°ã©ã ãèŠãããšã§ãã¯ã©ã¹ã¿ãŒéã®é¢ä¿ãèŠèŠåããç¹å®ã®é«ãã§ãã³ããã°ã©ã ãåæããŠãã¯ã©ã¹ã¿ãŒã®æé©ãªæ°ã決å®ã§ããŸãã
éå±€çã¯ã©ã¹ã¿ãªã³ã°ã®é·æãšçæ
- é·æïŒã¯ã©ã¹ã¿ãŒã®æ°ãäºåã«æå®ããå¿ èŠã¯ãããŸãããçµæã®ãã³ããã°ã©ã ã¯ãããŒã¿ã®æ§é ãçè§£ããã®ã«éåžžã«åœ¹ç«ã¡ãŸãã
- çæïŒèšç®ã³ã¹ããé«ããç¹ã«å€§èŠæš¡ãªããŒã¿ã»ããã®å ŽåïŒO(n^3)ã®è€éãïŒããã€ãºãå€ãå€ã«ææã«ãªãå¯èœæ§ããããŸãã
DBSCANïŒé¡§å®¢ããŒã¹ã®å®éã®åœ¢ç¶ã®çºèŠ
DBSCANïŒDensity-Based Spatial Clustering of Applications with NoiseïŒã¯ã坿¥ã«ããã¯ããããã€ã³ããã°ã«ãŒãåããäœå¯åºŠé åã«åç¬ã§ååšãããã€ã³ããå€ãå€ãšããŠããŒã¯ãã匷åãªã¢ã«ãŽãªãºã ã§ããããã«ãããä»»æã®åœ¢ç¶ã®ã¯ã©ã¹ã¿ãŒãèŠã€ããããŒã¿å ã®ãã€ãºãç¹å®ããã®ã«æé©ã§ãã
ä»çµã¿ïŒ
DBSCANã¯ã次ã®2ã€ã®ãã©ã¡ãŒã¿ã§å®çŸ©ãããŸãã
- `eps`ïŒã€ãã·ãã³ïŒïŒãããµã³ãã«ãå¥ã®ãµã³ãã«ã®è¿åã«ãããšèŠãªãããããã®ã2ã€ã®ãµã³ãã«éã®æå€§è·é¢ã
- `min_samples`ïŒMinPtsïŒïŒãã€ã³ããã³ã¢ãã€ã³ããšèŠãªãããããã®ãè¿åå ã®ãµã³ãã«ã®æ°ã
ã¢ã«ãŽãªãºã ã¯ãã³ã¢ãã€ã³ããããŒããŒãã€ã³ããããã³ãã€ãºãã€ã³ããèå¥ããä»»æã®åœ¢ç¶ã®ã¯ã©ã¹ã¿ãŒã圢æã§ããããã«ããŸããã³ã¢ãã€ã³ãããå°éã§ããªããã€ã³ãã¯å€ãå€ãšèŠãªãããäžæ£æ€åºãç¬èªã®é¡§å®¢è¡åã®èå¥ã«éåžžã«åœ¹ç«ã¡ãŸãã
DBSCANã®é·æãšçæ
- é·æïŒã¯ã©ã¹ã¿ãŒã®æ°ãæå®ããå¿ èŠã¯ãããŸãããä»»æã®åœ¢ç¶ã®ã¯ã©ã¹ã¿ãŒãèŠã€ããããšãã§ããŸããå€ãå€ã«å¯ŸããŠå ç¢ã§ãããå€ãå€ãèå¥ã§ããŸãã
- çæïŒ`eps`ãš`min_samples`ã®éžæã¯ãå°é£ã§åœ±é¿ãäžããå¯èœæ§ããããŸããå¯åºŠãç°ãªãã¯ã©ã¹ã¿ãŒã«ã¯èŠåŽããŸãã髿¬¡å ããŒã¿ã§ã¯å¹æãäœããªãå¯èœæ§ããããŸãïŒã次å ã®åªããïŒã
ã¯ã©ã¹ã¿ãªã³ã°ãè¶ ããŠïŒå®çšçãªããŒã±ãã£ã³ã°ã»ã°ã¡ã³ãã®ããã®RFMåæ
æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã¯åŒ·åã§ãããå Žåã«ãã£ãŠã¯ãããã·ã³ãã«ã§è§£éå¯èœãªã¢ãããŒããéåžžã«å¹æçã§ããRFMåæã¯ããã©ã³ã¶ã¯ã·ã§ã³å±¥æŽã«åºã¥ããŠé¡§å®¢ãã»ã°ã¡ã³ãåããå€å žçãªããŒã±ãã£ã³ã°ææ³ã§ããPythonãšPandasã§ç°¡åã«å®è£ ã§ããä¿¡ããããªãã»ã©å®çšçãªæŽå¯ãæäŸããŸãã
- Recency (R)ïŒé¡§å®¢ã¯æè¿ãã€è³Œå ¥ããŸãããïŒæè¿è³Œå ¥ãã顧客ã¯ãæ°ãããªãã¡ãŒã«å¯Ÿå¿ããå¯èœæ§ãé«ããªããŸãã
- Frequency (F)ïŒã©ã®ãããã®é »åºŠã§è³Œå ¥ããŸããïŒé »ç¹ã«è³Œå ¥ãã人ã¯ãå€ãã®å Žåãæãå¿ å®ã§ç±å¿ãªé¡§å®¢ã§ãã
- Monetary (M)ïŒã©ãããããéã䜿ããŸããïŒé«é¡æ¶è²»è ã¯ãå€ãã®å Žåãæã䟡å€ã®ãã顧客ã§ãã
ããã»ã¹ã«ã¯ãå顧客ã®RãFãMãèšç®ããåã¡ããªãã¯ã«ã¹ã³ã¢ïŒããšãã°ã1ã5ïŒãå²ãåœãŠãããšãå«ãŸããŸãããããã®ã¹ã³ã¢ãçµã¿åãããããšã§ã次ã®ãããªèšè¿°çãªã»ã°ã¡ã³ããäœæã§ããŸãã
- ãã£ã³ããªã³ïŒR=5ãF=5ãM=5ïŒïŒæé«ã®é¡§å®¢ãå ±å¥šéãäžããã
- ãã€ã€ã«ã«ã¹ã¿ããŒïŒR=XãF=5ãM=XïŒïŒé »ç¹ã«è³Œå ¥ããŸããã¢ããã»ã«ãããã€ã€ãªãã£ããã°ã©ã ãæäŸããŸãã
- ãªã¹ã¯ã®ãã顧客ïŒR=2ãF=XãM=XïŒïŒãã°ããè³Œå ¥ããŠããŸãããåãšã³ã²ãŒãžã¡ã³ããã£ã³ããŒã³ãéå§ããŠã顧客ãåãæ»ããŸãã
- æ°èŠé¡§å®¢ïŒR=5ãF=1ãM=XïŒïŒæè¿æåã®è³Œå ¥ãããŸãããåªãããªã³ããŒãã£ã³ã°äœéšã«çŠç¹ãåœãŠãŸãã
å®çšçãªããŒããããïŒã»ã°ã¡ã³ããŒã·ã§ã³ãããžã§ã¯ãã®å®è£
ã»ã°ã¡ã³ããŒã·ã§ã³ãããžã§ã¯ãã«çæããããšã¯æ°ãé ããªãããã«æãããããããŸãããã¬ã€ãããããã®æ®µéçãªããŒãããããæ¬¡ã«ç€ºããŸãã
- ããžãã¹ç®æšã®å®çŸ©ïŒäœãéæãããã§ããïŒç¶æçã10%åäžãããŸããïŒããŒã±ãã£ã³ã°ROIãæ¹åããŸããïŒããªãã®ç®æšã¯ããªãã®ã¢ãããŒããå°ããŸãã
- ããŒã¿ã®åéãšæºåïŒãã§ã«èª¬æããããã«ãç¹åŸŽãåéãã¯ãªãŒã³ã¢ãããããã³èšèšããŸããããã¯äœæ¥ã®80%ã§ãã
- æ¢çŽ¢çããŒã¿åæïŒEDAïŒïŒã¢ããªã³ã°ã®åã«ãããŒã¿ãæ¢çŽ¢ããŸããèŠèŠåã䜿çšããŠãååžãçžé¢é¢ä¿ãããã³ãã¿ãŒã³ãçè§£ããŸãã
- ã¢ãã«ã®éžæãšãã¬ãŒãã³ã°ïŒé©åãªã¢ã«ãŽãªãºã ãéžæããŸãããã®åçŽãããK-Meansããå§ããŸããè€éãªã¯ã©ã¹ã¿ãŒåœ¢ç¶ãããå Žåã¯ãDBSCANã詊ããŠãã ãããéå±€ãçè§£ããå¿ èŠãããå Žåã¯ãéå±€çã¯ã©ã¹ã¿ãªã³ã°ã䜿çšããŸããæºåããããŒã¿ã§ã¢ãã«ããã¬ãŒãã³ã°ããŸãã
- ã¯ã©ã¹ã¿ãŒã®è©äŸ¡ãšè§£éïŒã·ã«ãšããã¹ã³ã¢ãªã©ã®ã¡ããªãã¯ã䜿çšããŠã¯ã©ã¹ã¿ãŒãè©äŸ¡ããŸããããã«éèŠãªããšã«ãããããè§£éããŸããåã¯ã©ã¹ã¿ãŒããããã¡ã€ã«ããŸããããããå®çŸ©ããç¹æ§ã¯äœã§ããïŒèšè¿°çãªååãä»ããŸãïŒããšãã°ããå¹çŽå®¶ãããæè¡ã«ç²Ÿéãããã¯ãŒãŠãŒã¶ãŒãïŒã
- è¡åãšå埩ïŒããã¯æãéèŠãªã¹ãããã§ããã»ã°ã¡ã³ãã䜿çšããŠããžãã¹æŠç¥ãæšé²ããŸããã¿ãŒã²ãããçµã£ããã£ã³ããŒã³ãéå§ããŸãããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ãããŒãœãã©ã€ãºããŸããæ¬¡ã«ãçµæãç£èŠããå埩ããŸãã顧客ã®è¡åã¯å€åãããããã»ã°ã¡ã³ãã¯åçã§ããå¿ èŠããããŸãã
èŠèŠåã®èžè¡ïŒã»ã°ã¡ã³ããçãçããšããã
ã¯ã©ã¹ã¿ãŒå²ãåœãŠã®ãªã¹ãã¯ãããŸãçŽæçã§ã¯ãããŸãããèŠèŠåã¯ã調æ»çµæãçè§£ããé¢ä¿è ã«äŒéããããã®éµã§ããPythonã®`Matplotlib`ãš`Seaborn`ã䜿çšããŠïŒ
- æ£åžå³ãäœæããŠãã¯ã©ã¹ã¿ãŒã2DãŸãã¯3D空éã§ã©ã®ããã«åé¢ãããŠãããã確èªããŸããå€ãã®ç¹åŸŽãããå Žåã¯ãPCAïŒäž»æååæïŒãªã©ã®æ¬¡å åæžææ³ã䜿çšããŠèŠèŠåã§ããŸãã
- æ£ã°ã©ãã䜿çšããŠãããŸããŸãªã»ã°ã¡ã³ãéã®äž»èŠãªç¹åŸŽïŒå¹³åæ¯åºã幎霢ãªã©ïŒã®å¹³åå€ãæ¯èŒããŸãã
- ç®±ã²ãå³ã䜿çšããŠãåã»ã°ã¡ã³ãå ã®ç¹åŸŽã®ååžã確èªããŸãã
æŽå¯ãã圱é¿ãžïŒé¡§å®¢ã»ã°ã¡ã³ãã®ã¢ã¯ãã£ãå
ã»ã°ã¡ã³ãã®çºèŠã¯æŠãã®ååã«ãããŸãããæ¬åœã®äŸ¡å€ã¯ããããã䜿çšããŠè¡åãèµ·ãããšãã«è§£ãæŸãããŸãã以äžã«ã°ããŒãã«ãªäŸãããã€ã瀺ããŸãã
- ã»ã°ã¡ã³ãïŒé«äŸ¡å€ã®è²·ãç©å®¢ã ã¢ã¯ã·ã§ã³ïŒã°ããŒãã«ãªãã¡ãã·ã§ã³å°å£²æ¥è ã¯ããã®ã»ã°ã¡ã³ãã«æ°ããã³ã¬ã¯ã·ã§ã³ãžã®æ©æã¢ã¯ã»ã¹ãããŒãœãã©ã€ãºãããã¹ã¿ã€ãªã³ã°ã³ã³ãµã«ããŒã·ã§ã³ãããã³ç¹å¥ãªã€ãã³ããžã®æåŸ ãæäŸã§ããŸãã
- ã»ã°ã¡ã³ãïŒãŸããªãŠãŒã¶ãŒã ã¢ã¯ã·ã§ã³ïŒSaaSïŒSoftware as a ServiceïŒäŒç€Ÿã¯ãååã«æŽ»çšãããŠããªãæ©èœã匷調ããã¡ãŒã«ãã£ã³ããŒã³ããŠã§ãããŒã®æäŸããŸãã¯æ¥çã«é¢é£ããã±ãŒã¹ã¹ã¿ãã£ã®æäŸã«ãã£ãŠããã®ã»ã°ã¡ã³ããã¿ãŒã²ããã«ããããšãã§ããŸãã
- ã»ã°ã¡ã³ãïŒäŸ¡æ Œã«ææãªé¡§å®¢ã ã¢ã¯ã·ã§ã³ïŒåœéçãªèªç©ºäŒç€Ÿã¯ãäºç®æ è¡ã®ååŒãçŽåã®ãªãã¡ãŒã«é¢ããã¿ãŒã²ãããçµã£ãããã¢ãŒã·ã§ã³ããã®ã»ã°ã¡ã³ãã«éä¿¡ãããã¬ãã¢ã ãæ¯æãææã®ãã顧客ã«ã¯å²åŒãåé¿ã§ããŸãã
çµè«ïŒæªæ¥ã¯ããŒãœãã©ã€ãºãããŠãã
顧客ã»ã°ã¡ã³ããŒã·ã§ã³ã¯ãå€åœç±äŒæ¥ã®ããã«äºçŽãããèŽ æ²¢åã§ã¯ãªããªããŸãããããã¯ãçŸä»£ã®çµæžã§ç¹æ ããããšããŠããããããããžãã¹ã«ãšã£ãŠåºæ¬çãªæŠç¥ã§ããPythonãšãã®è±å¯ãªããŒã¿ãµã€ãšã³ã¹ãšã³ã·ã¹ãã ã®åæèœåãæŽ»çšããããšã§ãåœãŠæšéãè¶ ããŠãé¡§å®¢ã®æ·±ããŠçµéšçãªçè§£ãæ§ç¯ãå§ããããšãã§ããŸãã
çããŒã¿ããããŒãœãã©ã€ãºããã顧客äœéšãžã®éã®ãã¯å€é©çã§ããããŒãºãäºæž¬ãããã广çã«ã³ãã¥ãã±ãŒã·ã§ã³ãããã匷åã§åçæ§ã®é«ãé¢ä¿ãæ§ç¯ããããšãã§ããŸããããŒã¿ãæ¢çŽ¢ããããŸããŸãªã¢ã«ãŽãªãºã ã詊ããæãéèŠãªããšãšããŠãåžžã«åæäœæ¥ãå ·äœçãªããžãã¹ææã«çµã³ä»ããŸããç¡éã®éžæè¢ã®äžçã§ã¯ã顧客ãçè§£ããããšã究極ã®ç«¶äºäžã®åªäœæ§ã§ãã