äºæž¬ã¢ããªã³ã°ã«ãããååž°åæã®åãæ¢ããŸããã°ããŒãã«ãªæèã§æ£ç¢ºãªäºæž¬ãè¡ãããã®æ§ã ãªçš®é¡ãå¿çšããã¹ããã©ã¯ãã£ã¹ã«ã€ããŠè§£èª¬ããŸãã
ååž°åæã«ããäºæž¬ã¢ããªã³ã°ïŒå æ¬çã¬ã€ã
仿¥ã®ããŒã¿é§ååã®äžçã§ã¯ãå°æ¥ã®çµæãäºæž¬ããèœåã¯ãäžçäžã®ããžãã¹ãçµç¹ã«ãšã£ãŠéèŠãªè³ç£ã§ããäºæž¬ã¢ããªã³ã°æè¡ãç¹ã«ååž°åæã¯ããã¬ã³ããäºæž¬ãã倿°éã®é¢ä¿ãçè§£ããæ å ±ã«åºã¥ããæææ±ºå®ãè¡ãããã®åŒ·åãªããŒã«ãæäŸããŸãããã®å æ¬çãªã¬ã€ãã§ã¯ãååž°åæã®è€éããæãäžãããã®æ§ã ãªçš®é¡ãå¿çšããããŠæ£ç¢ºã§ä¿¡é Œæ§ã®é«ãäºæž¬ã®ããã®ãã¹ããã©ã¯ãã£ã¹ãæ¢æ±ããŸãã
ååž°åæãšã¯ïŒ
ååž°åæã¯ãåŸå±å€æ°ïŒäºæž¬ããã倿°ïŒãš1ã€ä»¥äžã®ç¬ç«å€æ°ïŒåŸå±å€æ°ã«åœ±é¿ãäžãããšèãã倿°ïŒãšã®é¢ä¿ã調ã¹ãããã«äœ¿çšãããçµ±èšçææ³ã§ããåºæ¬çã«ã¯ãç¬ç«å€æ°ã®å€åãåŸå±å€æ°ã®å€åãšã©ã®ããã«é¢é£ããŠããããã¢ãã«åããŸããç®æšã¯ããã®é¢ä¿ã衚ãæé©ãªçŽç·ãŸãã¯æ²ç·ãèŠã€ããããšã§ãããããã«ããç¬ç«å€æ°ã®å€ã«åºã¥ããŠåŸå±å€æ°ã®å€ãäºæž¬ã§ããããã«ãªããŸãã
ããå€åœç±å°å£²äŒæ¥ããç°ãªãå°åã§ã®æé売äžãäºæž¬ããããšèããŠãããšæ³åããŠã¿ãŠãã ããã圌ãã¯ãããŒã±ãã£ã³ã°è²»çšããŠã§ããµã€ãã®ãã©ãã£ãã¯ãå£ç¯æ§ãªã©ã®ç¬ç«å€æ°ãçšããååž°åæã䜿çšããŠãåå°åã®å£²äžé«ãäºæž¬ãããããããŸãããããã«ãããã°ããŒãã«ãªäºæ¥å šäœã§ããŒã±ãã£ã³ã°äºç®ãšåšåº«ç®¡çãæé©åããããšãã§ããŸãã
ååž°åæã®çš®é¡
ååž°åæã«ã¯ãããŸããŸãªçš®é¡ã®ããŒã¿ãé¢ä¿ã«é©ãã倿§ãªææ³ãå«ãŸããŸãã以äžã«ãæãäžè¬çãªçš®é¡ãããã€ã玹ä»ããŸãã
1. ç·åœ¢ååž°
ç·åœ¢ååž°ã¯ãåŸå±å€æ°ãšç¬ç«å€æ°ã®éã«ç·åœ¢é¢ä¿ãä»®å®ãããæãåçŽãªåœ¢åŒã®ååž°åæã§ãã倿°éã®é¢ä¿ãçŽç·ã§è¡šããå Žåã«äœ¿çšãããŸããåç·åœ¢ååž°ã®åŒã¯æ¬¡ã®ãšããã§ãã
Y = a + bX
ããã§ïŒ
- Yã¯åŸå±å€æ°ã§ã
- Xã¯ç¬ç«å€æ°ã§ã
- aã¯åçïŒXã0ã®ãšãã®Yã®å€ïŒã§ã
- bã¯åŸãïŒXã1åäœå€åãããšãã®Yã®å€åéïŒã§ã
äŸïŒ ã°ããŒãã«ãªèŸ²æ¥äŒæ¥ããè¥æã®äœ¿çšéïŒXïŒãšäœç©ã®åç©«éïŒYïŒã®é¢ä¿ãçè§£ããããšèããŠããŸããç·åœ¢ååž°ã䜿çšããããšã§ãã³ã¹ããšç°å¢ãžã®åœ±é¿ãæå°éã«æããªãããäœç©ã®çç£ãæå€§åããããã®æé©ãªè¥æã®éãæ±ºå®ã§ããŸãã
2. éååž°
éååž°ã¯ãç·åœ¢ååž°ãæ¡åŒµããŠè€æ°ã®ç¬ç«å€æ°ãå«ãããã®ã§ããããã«ãããåŸå±å€æ°ã«å¯Ÿããããã€ãã®èŠå ã®è€åçãªå¹æãåæããããšãã§ããŸããéååž°ã®åŒã¯æ¬¡ã®ãšããã§ãã
Y = a + b1X1 + b2X2 + ... + bnXn
ããã§ïŒ
- Yã¯åŸå±å€æ°ã§ã
- X1, X2, ..., Xnã¯ç¬ç«å€æ°ã§ã
- aã¯åçã§ã
- b1, b2, ..., bnã¯åç¬ç«å€æ°ã®ä¿æ°ã§ã
äŸïŒ ã°ããŒãã«ãªEã³ããŒã¹äŒæ¥ã¯ã幎霢ïŒX1ïŒãåå ¥ïŒX2ïŒããŠã§ããµã€ãã§ã®æŽ»åïŒX3ïŒãããŒã±ãã£ã³ã°ããã¢ãŒã·ã§ã³ïŒX4ïŒãªã©ã®å€æ°ã«åºã¥ããŠé¡§å®¢ã®æ¯åºïŒYïŒãäºæž¬ããããã«éååž°ã䜿çšããŸããããã«ãããããŒã±ãã£ã³ã°ãã£ã³ããŒã³ãããŒãœãã©ã€ãºããé¡§å®¢ç¶æçãåäžãããããšãã§ããŸãã
3. å€é åŒååž°
å€é åŒååž°ã¯ãåŸå±å€æ°ãšç¬ç«å€æ°ã®é¢ä¿ãç·åœ¢ã§ã¯ãªããå€é åŒã§è¡šãããšãã§ããå Žåã«äœ¿çšãããŸãããã®ã¿ã€ãã®ååž°ã¯ãæ²ç·çãªé¢ä¿ãã¢ãã«åã§ããŸãã
äŸïŒ ã€ã³ãã©ã®å¹Žéœ¢ïŒXïŒãšãã®ç¶æè²»ïŒYïŒã®é¢ä¿ãã¢ãã«åããã«ã¯ãå€é åŒååž°ãå¿ èŠã«ãªãå ŽåããããŸãããªããªããã€ã³ãã©ãå€ããªãã«ã€ããŠã³ã¹ããææ°é¢æ°çã«å¢å ããããšãå€ãããã§ãã
4. ããžã¹ãã£ãã¯ååž°
ããžã¹ãã£ãã¯ååž°ã¯ãåŸå±å€æ°ãã«ããŽãªã«ã«ïŒ2å€ãŸãã¯å€ã¯ã©ã¹ïŒã§ããå Žåã«äœ¿çšãããŸããããäºè±¡ãçºçãã確çãäºæž¬ããŸããé£ç¶çãªå€ãäºæž¬ãã代ããã«ãç¹å®ã®ã«ããŽãªã«å±ããå¯èœæ§ãäºæž¬ããŸãã
äŸïŒ ã°ããŒãã«ãªéè¡ã¯ãä¿¡çšã¹ã³ã¢ïŒX1ïŒãåå ¥ïŒX2ïŒãè² åµå¯Ÿåå ¥æ¯çïŒX3ïŒãªã©ã®èŠå ã«åºã¥ããŠã顧客ãããŒã³ãããã©ã«ããã確çïŒY = 0ãŸãã¯1ïŒãäºæž¬ããããã«ããžã¹ãã£ãã¯ååž°ã䜿çšããŸããããã«ããããªã¹ã¯ãè©äŸ¡ããæ å ±ã«åºã¥ããèè³æ±ºå®ãè¡ãããšãã§ããŸãã
5. æç³»åååž°
æç³»åååž°ã¯ãæéãšãšãã«åéãããããŒã¿ãåæããããã«ç¹å¥ã«èšèšãããŠããŸãããã¬ã³ããå£ç¯æ§ãèªå·±çžé¢ãªã©ãããŒã¿å ã®æéçäŸåé¢ä¿ãèæ ®ã«å ¥ããŸããäžè¬çãªææ³ã«ã¯ãARIMAïŒèªå·±ååž°ååç§»åå¹³åïŒã¢ãã«ãææ°å¹³æ»åæ³ãªã©ããããŸãã
äŸïŒ ã°ããŒãã«ãªèªç©ºäŒç€Ÿã¯ãéå»ã®ããŒã¿ãå£ç¯æ§ãçµæžææšïŒXïŒã«åºã¥ããŠå°æ¥ã®ä¹å®¢éèŠïŒYïŒãäºæž¬ããããã«æç³»åååž°ã䜿çšããŸããããã«ããããã©ã€ãã¹ã±ãžã¥ãŒã«ãäŸ¡æ ŒæŠç¥ããªãœãŒã¹é åãæé©åããããšãã§ããŸãã
ã°ããŒãã«ãªæèã«ãããååž°åæã®å¿çš
ååž°åæã¯ãäžçäžã®æ°å€ãã®ç£æ¥ãã»ã¯ã¿ãŒã«ãŸãããå¿çšãæã€å€ç®çãªããŒã«ã§ãã以äžã«ããã€ãã®äž»èŠãªäŸãæããŸãã
- éèïŒ æ ªäŸ¡ã®äºæž¬ãä¿¡çšãªã¹ã¯ã®è©äŸ¡ãçµæžææšã®äºæž¬ã
- ããŒã±ãã£ã³ã°ïŒ ããŒã±ãã£ã³ã°ãã£ã³ããŒã³ã®æé©åã顧客é¢åã®äºæž¬ãæ¶è²»è è¡åã®çè§£ã
- ãã«ã¹ã±ã¢ïŒ ç æ°ã®çºçäºæž¬ããªã¹ã¯èŠå ã®ç¹å®ãæ²»ç广ã®è©äŸ¡ã
- è£œé æ¥ïŒ çç£ããã»ã¹ã®æé©åãèšåæ éã®äºæž¬ãå質管çã
- ãµãã©ã€ãã§ãŒã³ç®¡çïŒ éèŠäºæž¬ãåšåº«ã¬ãã«ã®æé©åã茞éã³ã¹ãã®äºæž¬ã
- ç°å¢ç§åŠïŒ æ°åå€åã®ã¢ããªã³ã°ãæ±æã¬ãã«ã®äºæž¬ãç°å¢åœ±é¿ã®è©äŸ¡ã
äŸãã°ãå€åœç±ã®è£œè¬äŒç€Ÿã¯ãçŸå°ã®èŠå¶ãæåçãªéããçµæžç¶æ³ãªã©ã®èŠå ãèæ ®ããªãããããŸããŸãªåœã§ã®å»è¬å販売ã«å¯Ÿããç°ãªãããŒã±ãã£ã³ã°æŠç¥ã®åœ±é¿ãçè§£ããããã«ååž°åæã䜿çšãããããããŸãããããã«ãããåå°åã§æå€§ã®å¹æãåŸãããã«ããŒã±ãã£ã³ã°æŽ»åã調æŽããããšãã§ããŸãã
ååž°åæã®åææ¡ä»¶
ååž°åæãä¿¡é Œã§ããçµæãçã¿åºãããã«ã¯ãç¹å®ã®åææ¡ä»¶ãæºããããŠããå¿ èŠããããŸãããããã®åææ¡ä»¶ã«éåãããšãäžæ£ç¢ºãªäºæž¬ã誀解ãæãçµè«ã«ã€ãªããå¯èœæ§ããããŸããäž»èŠãªåææ¡ä»¶ã«ã¯ä»¥äžãå«ãŸããŸãã
- ç·åœ¢æ§ïŒ ç¬ç«å€æ°ãšåŸå±å€æ°ã®é¢ä¿ãç·åœ¢ã§ããããšã
- ç¬ç«æ§ïŒ èª€å·®ïŒæ®å·®ïŒãäºãã«ç¬ç«ããŠããããšã
- ç忣æ§ïŒ 誀差ã®åæ£ããç¬ç«å€æ°ã®ãã¹ãŠã®ã¬ãã«ã§äžå®ã§ããããšã
- æ£èŠæ§ïŒ èª€å·®ãæ£èŠååžã«åŸãããšã
- å€éå ±ç·æ§ããªãããšïŒ ïŒéååž°ã«ãããŠïŒç¬ç«å€æ°å士ã匷ãçžé¢ããŠããªãããšã
ãããã®åææ¡ä»¶ã蚺æãããããçµ±èšçæ€å®ãçšããŠè©äŸ¡ããããšãéèŠã§ããéåãæ€åºãããå Žåã¯ãããŒã¿ã®å€æã代æ¿ã¢ããªã³ã°ææ³ã®äœ¿çšãªã©ãä¿®æ£æªçœ®ãå¿ èŠã«ãªãå ŽåããããŸããäŸãã°ãã°ããŒãã«ãªã³ã³ãµã«ãã£ã³ã°äŒç€Ÿãã倿§ãªåžå Žã«ãããããžãã¹æŠç¥ã«ã€ããŠã¯ã©ã€ã¢ã³ãã«å©èšããããã«ååž°åæã䜿çšããå Žåããããã®åææ¡ä»¶ãæ éã«è©äŸ¡ããå¿ èŠããããŸãã
ã¢ãã«ã®è©äŸ¡ãšéžæ
ååž°ã¢ãã«ãæ§ç¯ããããããã®æ§èœãè©äŸ¡ããç¹å®ã®åºæºã«åºã¥ããŠæé©ãªã¢ãã«ãéžæããããšãäžå¯æ¬ ã§ããäžè¬çãªè©äŸ¡ææšã«ã¯ä»¥äžãå«ãŸããŸãã
- 決å®ä¿æ°ïŒR-squaredïŒïŒ åŸå±å€æ°ã®åæ£ã®ãã¡ãç¬ç«å€æ°ã«ãã£ãŠèª¬æãããå²åãæž¬å®ããŸããR-squaredãé«ãã»ã©ãåœãŠã¯ãŸããè¯ãããšã瀺ããŸãã
- èªç±åºŠèª¿æŽæžã¿æ±ºå®ä¿æ°ïŒAdjusted R-squaredïŒïŒ ã¢ãã«å ã®ç¬ç«å€æ°ã®æ°ãèæ ®ããŠR-squaredã調æŽããäžå¿ èŠãªè€éããæã€ã¢ãã«ã«ããã«ãã£ãäžããŸãã
- å¹³åäºä¹èª€å·®ïŒMSEïŒïŒ äºæž¬å€ãšå®éã®å€ã®å·®ã®äºä¹ã®å¹³åãæž¬å®ããŸããMSEãäœãã»ã©ã粟床ãé«ãããšã瀺ããŸãã
- äºä¹å¹³åå¹³æ¹æ ¹èª€å·®ïŒRMSEïŒïŒ MSEã®å¹³æ¹æ ¹ã§ãããããè§£éããããäºæž¬èª€å·®ã®å°ºåºŠãæäŸããŸãã
- å¹³å絶察誀差ïŒMAEïŒïŒ äºæž¬å€ãšå®éã®å€ã®çµ¶å¯Ÿå·®ã®å¹³åãæž¬å®ããŸãã
- AICïŒèµ€æ± æ å ±éèŠæºïŒãšBICïŒãã€ãºæ å ±éèŠæºïŒïŒ ã¢ãã«ã®è€éãã«ããã«ãã£ã課ããé©å床ãšå¹çŽæ§ã®ãã©ã³ã¹ãè¯ãã¢ãã«ãå¥œãææšã§ããAIC/BICã®å€ãäœãã»ã©æãŸããã§ãã
ã°ããŒãã«ãªæèã§ã¯ãã¢ãã«ãæªç¥ã®ããŒã¿ã«å¯ŸããŠãããŸãæ±åããããšãä¿èšŒããããã«ã亀差æ€èšŒïŒã¯ãã¹ããªããŒã·ã§ã³ïŒææ³ã䜿çšããããšãéèŠã§ããããã«ã¯ãããŒã¿ããã¬ãŒãã³ã°ã»ãããšãã¹ãã»ããã«åå²ãããã¹ãã»ããã§ã¢ãã«ã®æ§èœãè©äŸ¡ããããšãå«ãŸããŸããããã¯ãããŒã¿ã倿§ãªæåçããã³çµæžçèæ¯ããæ¥ãŠããå Žåã«ç¹ã«éèŠã§ãã
ååž°åæã®ãã¹ããã©ã¯ãã£ã¹
ååž°åæã®çµæã®æ£ç¢ºæ§ãšä¿¡é Œæ§ã確ä¿ããããã«ã以äžã®ãã¹ããã©ã¯ãã£ã¹ãèæ ®ããŠãã ããã
- ããŒã¿æºåïŒ æ¬ æå€ãå€ãå€ãäžè²«æ§ã®ãªãããŒã¿åœ¢åŒãåŠçããããŒã¿ã培åºçã«ã¯ãªãŒã³ã¢ããããã³ååŠçããŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒ æ¢åã®å€æ°ããæ°ããç¹åŸŽéãäœæããŠãã¢ãã«ã®äºæž¬èœåãåäžãããŸãã
- ã¢ãã«éžæïŒ ããŒã¿ã®æ§è³ªãšç 究課é¡ã«åºã¥ããŠãé©åãªååž°ææ³ãéžæããŸãã
- åææ¡ä»¶ã®æ€èšŒïŒ ååž°åæã®åææ¡ä»¶ã確èªããéåãããã°å¯ŸåŠããŸãã
- ã¢ãã«è©äŸ¡ïŒ é©åãªææšãšäº€å·®æ€èšŒææ³ã䜿çšããŠãã¢ãã«ã®æ§èœãè©äŸ¡ããŸãã
- è§£éïŒ ã¢ãã«ã®éçãšããŒã¿ã®æèãèæ ®ããŠãçµæãæ éã«è§£éããŸãã
- ã³ãã¥ãã±ãŒã·ã§ã³ïŒ èŠèŠåãå¹³æãªèšèãçšããŠã調æ»çµæãæç¢ºãã€å¹æçã«äŒããŸãã
äŸãã°ãç°ãªãåœã®é¡§å®¢ããŒã¿ãåæããã°ããŒãã«ãªããŒã±ãã£ã³ã°ããŒã ã¯ãããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒGDPRãªã©ïŒãæåçãªãã¥ã¢ã³ã¹ã«æ³šæããå¿ èŠããããŸããããŒã¿æºåã«ã¯ãå¿ååãæåçã«ããªã±ãŒããªå±æ§ã®åãæ±ããå«ãŸããªããã°ãªããŸãããããã«ãã¢ãã«ã®çµæã®è§£éã¯ãçŸå°ã®åžå Žç¶æ³ãæ¶è²»è è¡åãèæ ®ããå¿ èŠããããŸãã
ã°ããŒãã«ååž°åæã«ããã課é¡ãšèæ ®äºé
ç°ãªãåœãæåã«ãããããŒã¿ãåæããããšã¯ãååž°åæã«ãšã£ãŠç¹æã®èª²é¡ãæç€ºããŸãã
- ããŒã¿ã®å¯çšæ§ãšåè³ªïŒ ããŒã¿ã®å¯çšæ§ãšå質ã¯å°åã«ãã£ãŠå€§ããç°ãªãå¯èœæ§ããããäžè²«æ§ã®ããæ¯èŒå¯èœãªããŒã¿ã»ãããäœæããããšãå°é£ã«ãªããŸãã
- æåçãªéãïŒ æåçãªéãã¯æ¶è²»è è¡åã奜ã¿ã«åœ±é¿ãäžããå¯èœæ§ããããååž°çµæãè§£éããéã«æ éãªèæ ®ãå¿ èŠã§ãã
- çµæžç¶æ³ïŒ çµæžç¶æ³ã¯åœã«ãã£ãŠå€§ããç°ãªãã倿°éã®é¢ä¿ã«åœ±é¿ãäžããå¯èœæ§ããããŸãã
- èŠå¶ç°å¢ïŒ åœã«ãã£ãŠèŠå¶ç°å¢ãç°ãªããããŒã¿åéãšåæã«åœ±é¿ãäžããå¯èœæ§ããããŸãã
- èšèªã®å£ïŒ èšèªã®å£ã¯ãç°ãªãå°åã®ããŒã¿ãçè§£ãè§£éããããšãå°é£ã«ããå¯èœæ§ããããŸãã
- ããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒ GDPRãCCPAãªã©ã®ã°ããŒãã«ãªããŒã¿ãã©ã€ãã·ãŒèŠå¶ãæ éã«èæ ®ããå¿ èŠããããŸãã
ãããã®èª²é¡ã«å¯ŸåŠããããã«ã¯ãçŸå°ã®å°éå®¶ãšååããæšæºåãããããŒã¿åéæ¹æ³ã䜿çšããçµæãè§£éããéã«æåçããã³çµæžçãªæèãæ éã«èæ ®ããããšãéèŠã§ããäŸãã°ãç°ãªãåœã ã®æ¶è²»è è¡åãã¢ãã«åããå Žåãæåãæ¶è²»è ã®å¥œã¿ã«äžãã圱é¿ãèæ ®ããããã«ãæåçãªææšãç¬ç«å€æ°ãšããŠå«ããå¿ èŠããããããããŸããããŸããç°ãªãèšèªã§ã¯ãããã¹ãããŒã¿ãç¿»èš³ãæšæºåããããã«èªç¶èšèªåŠçæè¡ãå¿ èŠã§ãã
é«åºŠãªååž°ææ³
åºæ¬çãªååž°ã®çš®é¡ãè¶ ããŠãããè€éãªã¢ããªã³ã°ã®èª²é¡ã«å¯ŸåŠããããã«äœ¿çšã§ããããã€ãã®é«åºŠãªææ³ããããŸãã
- æ£ååææ³ïŒãªããžãã©ããœããšã©ã¹ãã£ãã¯ãããïŒïŒ ãããã®ææ³ã¯ãã¢ãã«ã®ä¿æ°ã«ããã«ãã£ã远å ããŠéå°é©åãé²ããŸããç¹ã«é«æ¬¡å ããŒã¿ãæ±ãå Žåã«æçšã§ãã
- ãµããŒããã¯ã¿ãŒååž°ïŒSVRïŒïŒ éç·åœ¢é¢ä¿ãå€ãå€ã广çã«åŠçã§ãã匷åãªææ³ã§ãã
- æšããŒã¹ã®ååž°ïŒæ±ºå®æšãã©ã³ãã ãã©ã¬ã¹ããåŸé ããŒã¹ãã£ã³ã°ïŒïŒ ãããã®ææ³ã¯ãæ±ºå®æšã䜿çšããŠå€æ°éã®é¢ä¿ãã¢ãã«åãããã°ãã°é«ã粟床ãšé 奿§ãæäŸããŸãã
- ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒ ãã£ãŒãã©ãŒãã³ã°ã¢ãã«ã¯ãç¹ã«å€§èŠæš¡ãªããŒã¿ã»ãããæ±ãéã®è€éãªååž°ã¿ã¹ã¯ã«äœ¿çšã§ããŸãã
é©åãªææ³ã®éžæã¯ãããŒã¿ã®ç¹å®ã®ç¹æ§ãšåæã®ç®æšã«äŸåããŸããæè¯ã®ã¢ãããŒããèŠã€ããããã«ã¯ãå®éšãšæ éãªè©äŸ¡ãéµãšãªããŸãã
ååž°åæã®ããã®ãœãããŠã§ã¢ãšããŒã«
ååž°åæãå®è¡ããããã®å€æ°ã®ãœãããŠã§ã¢ããã±ãŒãžãããŒã«ããããããããã«é·æãšçæããããŸãã人æ°ã®ããéžæè¢ã«ã¯ä»¥äžãå«ãŸããŸãã
- R: ååž°åæã®ããã®å¹ åºãããã±ãŒãžãæã€ãç¡æã§ãªãŒãã³ãœãŒã¹ã®çµ±èšããã°ã©ãã³ã°èšèªã
- Python: Scikit-learnãStatsmodelsãTensorFlowãªã©ã®ã©ã€ãã©ãªãåããå€ç®çãªããã°ã©ãã³ã°èšèªã§ã匷åãªååž°æ©èœãæäŸããŸãã
- SPSS: ãŠãŒã¶ãŒãã¬ã³ããªãŒãªã€ã³ã¿ãŒãã§ãŒã¹ãšå æ¬çãªååž°ããŒã«ãåããåçšçµ±èšãœãããŠã§ã¢ããã±ãŒãžã
- SAS: çµ±èšåæãšããŒã¿ç®¡çã®ããã«æ¥çã§åºã䜿çšãããŠããåçšãœãããŠã§ã¢ã¹ã€ãŒãã
- Excel: æ©èœã¯éãããŠããŸãããExcelã¯åçŽãªç·åœ¢ååž°ã¿ã¹ã¯ã«äœ¿çšã§ããŸãã
- Tableau & Power BI: ãããã®ããŒã«ã¯äž»ã«ããŒã¿å¯èŠåçšã§ãããåºæ¬çãªååž°æ©èœãæäŸããŸãã
ãœãããŠã§ã¢ã®éžæã¯ããŠãŒã¶ãŒã®çµéšãåæã®è€éãããããžã§ã¯ãã®ç¹å®ã®èŠä»¶ã«äŸåããŸããGoogle Cloud AI PlatformãAWS SageMakerãªã©ã®å€ãã®ã¯ã©ãŠãããŒã¹ã®ãã©ãããã©ãŒã ã¯ãå€§èŠæš¡ãªååž°åæã®ããã®åŒ·åãªæ©æ¢°åŠç¿ããŒã«ãžã®ã¢ã¯ã»ã¹ãæäŸããŸããç¹ã«æ©å¯æ§ã®é«ãã°ããŒãã«ããŒã¿ãæ±ãå Žåããããã®ãã©ãããã©ãŒã ã䜿çšããéã®ããŒã¿ã»ãã¥ãªãã£ãšã³ã³ãã©ã€ã¢ã³ã¹ã®ç¢ºä¿ãéèŠã§ãã
çµè«
ååž°åæã¯äºæž¬ã¢ããªã³ã°ã®ããã®åŒ·åãªããŒã«ã§ãããäŒæ¥ãçµç¹ãæ å ±ã«åºã¥ããæææ±ºå®ãè¡ããå°æ¥ã®çµæãäºæž¬ããããšãå¯èœã«ããŸããååž°ã®ããŸããŸãªçš®é¡ããã®åææ¡ä»¶ãããã³ãã¹ããã©ã¯ãã£ã¹ãçè§£ããããšã§ããã®ææ³ã掻çšããŠããŒã¿ãã貎éãªæŽå¯ãåŸãŠãã°ããŒãã«ãªæèã§ã®æææ±ºå®ãæ¹åããããšãã§ããŸããäžçããŸããŸãçžäºæ¥ç¶ãããããŒã¿é§ååã«ãªãã«ã€ããŠãååž°åæãç¿åŸããããšã¯ãããŸããŸãªæ¥çã®å°éå®¶ã«ãšã£ãŠäžå¯æ¬ ãªã¹ãã«ã§ãã
ç°ãªãæåãå°åã«ãŸãããããŒã¿ãåæããéã®èª²é¡ãšãã¥ã¢ã³ã¹ãèæ ®ããããã«å¿ããŠã¢ãããŒããé©å¿ãããããšãå¿ããªãã§ãã ãããã°ããŒãã«ãªèŠç¹ãåãå ¥ããé©åãªããŒã«ãšæè¡ã䜿çšããããšã§ã仿¥ã®ãã€ãããã¯ãªäžçã§æåãåããããã«ãååž°åæã®æœåšèœåãæå€§éã«åŒãåºãããšãã§ããŸãã