å®éšèšç»æ³ã®å æ¬çã¬ã€ãã倿§ãªåéãã°ããŒãã«ãªæèã§ã圱é¿åã®ããå®éšãè¡ãããã®åºæ¬ååãæ¹æ³è«ããã¹ããã©ã¯ãã£ã¹ã解説ããŸãã
å®éšèšç»æ³ã®ç¿åŸïŒäžçã®ç ç©¶è ãšã€ãããŒã¿ãŒã®ããã®å æ¬çã¬ã€ã
仿¥ã®ããŒã¿é§ååã®äžçã§ã¯ãå³å¯ã§ä¿¡é Œæ§ã®é«ãå®éšã宿œããèœåãæãéèŠã§ããç§åŠè ããšã³ãžãã¢ãããŒã±ã¿ãŒãããžãã¹ãªãŒããŒã®ãããã§ãã£ãŠããå®éšèšç»æ³ããã£ãããšçè§£ããããšã§ãæ å ±ã«åºã¥ããæææ±ºå®ãè¡ããããã»ã¹ãæé©åããã€ãããŒã·ã§ã³ãæšé²ããããšãã§ããŸãããã®å æ¬çãªã¬ã€ãã¯ã倿§ãªåéãã°ããŒãã«ãªæèã§å¹æçãªå®éšèšç»ãçè§£ããå®è¡ããããã®ãã¬ãŒã ã¯ãŒã¯ãæäŸããŸãã
å®éšèšç»æ³ãšã¯äœãïŒ
å®éšèšç»æ³ã¯ã1ã€ä»¥äžã®ç¬ç«å€æ°ïŒèŠå ïŒãåŸå±å€æ°ïŒçµæïŒã«äžãã圱é¿ã倿ããããã«ãå®éšãèšç»ã宿œãåæããããã®äœç³»çãªã¢ãããŒãã§ããããã«ã¯ãç¡é¢ä¿ãªå€æ°ãæ éã«å¶åŸ¡ããçµ±èšçææ³ãçšããŠåŠ¥åœãªçµè«ãå°ãåºãããšãå«ãŸããŸããç®æšã¯ãèŠå ãšé¢å¿ã®ããçµæãšã®éã«å æé¢ä¿ã確ç«ããããšã§ãã
ç ç©¶è ãä»å ¥ããã«åã«ããŒã¿ã芳å¯ã»èšé²ãã芳å¯ç ç©¶ãšã¯ç°ãªããå®éšèšç»æ³ã§ã¯ã1ã€ä»¥äžã®èŠå ãç©æ¥µçã«æäœããŠãã®åœ±é¿ã芳å¯ããŸããããã«ãããå æé¢ä¿ã«ã€ããŠãã匷åãªæšè«ãå¯èœã«ãªããŸãã
ãªãå®éšèšç»æ³ã¯éèŠãªã®ãïŒ
广çãªå®éšèšç»æ³ã¯ãããã€ãã®çç±ã§éåžžã«éèŠã§ãïŒ
- å æé¢ä¿ã®ç¢ºç«ïŒ å®éšã«ãããç ç©¶è ã¯ãã倿°ã®å€åãå¥ã®å€æ°ã®å€åãåŒãèµ·ãããã©ããã倿ã§ããŸãã
- ããã»ã¹ã®æé©åïŒ èŠå ãäœç³»çã«å€åãããããšã§ãå®éšã¯æãŸããçµæïŒäŸïŒåéãå¹çã顧客æºè¶³åºŠïŒãæå€§åããããã®æé©ãªæ¡ä»¶ãç¹å®ã§ããŸãã
- ä»®èª¬ã®æ€èšŒïŒ å®éšã¯ãç§åŠçä»®èª¬ãæ¯æãŸãã¯å蚌ããããã®èšŒæ ãæäŸããŸãã
- æ å ±ã«åºã¥ããæææ±ºå®ïŒ å®éšçµæã¯ãããŸããŸãªåéã§ã®æææ±ºå®ã«æ å ±ãæäŸããããŒã¿é§ååã®æŽå¯ãæäŸããŸãã
- äžç¢ºå®æ§ã®äœæžïŒ ç¡é¢ä¿ãªå€æ°ãå¶åŸ¡ããããšã«ãããå®éšã¯äžç¢ºå®æ§ãæå°éã«æããçµæã®ä¿¡é Œæ§ãé«ããŸãã
- ã€ãããŒã·ã§ã³ã®æšé²ïŒ å®éšã«ãããæ°ããã¢ã€ãã¢ãæ¢æ±ããè€éãªåé¡ã«å¯Ÿããæ¬æ°ãªè§£æ±ºçãç¹å®ã§ããŸãã
å®éšèšç»æ³ã®åºæ¬åå
广çãªå®éšèšç»æ³ãæ¯ããããã€ãã®æ žãšãªãååããããŸãïŒ
1. å¶åŸ¡
å¶åŸ¡ãšã¯ãçµæã亀絡ãããå¯èœæ§ã®ããç¡é¢ä¿ãªå€æ°ã®åœ±é¿ãæå°éã«æããããšãæããŸããããã¯ã次ã®ãããªããŸããŸãªææ³ãéããŠéæãããŸãïŒ
- å¯Ÿç §çŸ€ïŒ å®éšçåŠçœ®ãåããªã矀ïŒå¯Ÿç §çŸ€ïŒãå«ããããšã§ãæ¯èŒã®ããã®ããŒã¹ã©ã€ã³ãæäŸããŸãã
- æšæºåïŒ ãã¹ãŠã®å®éšãŠãããã§äžè²«ããæ¡ä»¶ïŒäŸïŒæž©åºŠãæ¹¿åºŠãæ©åšïŒãç¶æããŸãã
- ããããã³ã°ïŒ åãããã¯å ã®ã°ãã€ããæžããããã«ãå ±éã®ç¹æ§ïŒäŸïŒå Žæãæé垯ïŒã«åºã¥ããŠå®éšãŠãããããããã¯ã«ã°ã«ãŒãåããŸãã
äŸïŒ æ°è¬ã®æå¹æ§ãæ€èšŒããèšåºè©Šéšã§ã¯ãå¯Ÿç §çŸ€ã¯ãã©ã»ãïŒäžæŽ»æ§ç©è³ªïŒãæäžãããæ²»ç矀ã¯å®éã®è¬ãæäžãããŸããé£äºãéåãªã©ãä»ã®ãã¹ãŠã®èŠå ã¯äž¡çŸ€ã§æšæºåãããã¹ãã§ãã
2. ç¡äœçºå
ç¡äœçºåãšã¯ãå®éšãŠããããåŠçœ®çŸ€ã«ã©ã³ãã ã«å²ãåœãŠãããšãæããŸããããã«ãããå®éšéå§æã«å矀ãã§ããã ãå質ã«ãªãããã«ãããã€ã¢ã¹ã®ãªã¹ã¯ãæå°éã«æããŸããç¡äœçºåã¯ã次ã®ãããªããŸããŸãªæ¹æ³ã§å®çŸã§ããŸãïŒ
- åçŽç¡äœçºæœåºïŒ åå®éšãŠããããã©ã®åŠçœ®çŸ€ã«ãçãã確çã§å²ãåœãŠãããŸãã
- å±€åç¡äœçºæœåºïŒ æ¯éå£ãç¹æ§ïŒäŸïŒå¹Žéœ¢ãæ§å¥ïŒã«åºã¥ããŠå±€ïŒãµãã°ã«ãŒãïŒã«åå²ããåå±€ããç¡äœçºã«ãµã³ãã«ãæœåºããŸãã
äŸïŒ ç°ãªãè¥æåŠçãæ¯èŒãã蟲æ¥å®éšã§ã¯ãåå£ã®è³ªã«ç³»çµ±çãªéããçµæã«åœ±é¿ããã®ãé¿ãããããåå°ã®åºç»ãååŠçã«ç¡äœçºã«å²ãåœãŠãããŸãã
3. å埩
å埩ãšã¯ãçµæã®ä¿¡é Œæ§ãé«ããããã«å®éšãè€æ°åç¹°ãè¿ãããšãæããŸããããã«ãããã©ã³ãã ãªå€åã®åœ±é¿ãæžãããåŠçœ®å¹æãããæ£ç¢ºã«æšå®ããããšãã§ããŸããå埩ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- åŠçœ®ããšã®è€æ°ã®å®éšãŠãããïŒ ååŠçœ®ãè€æ°ã®ç¬ç«ãããŠãããã§ãã¹ãããŸãã
- å®éšå šäœã®ç¹°ãè¿ãïŒ å®éšå šäœãäžåºŠã ãã§ãªããçæ³çã«ã¯ç°ãªãæ¡ä»¶äžã§è€æ°å宿œããŸãã
äŸïŒ 補é ããã»ã¹ãæé©åãã補é å®éšã§ã¯ã芳å¯ãããçµæãå¶ç¶ã«ãããã®ã§ã¯ãªãäžè²«ããŠããããšã確èªããããã«ãåãã©ã¡ãŒã¿èšå®ã§ããã»ã¹ãè€æ°åç¹°ãè¿ãããŸãã
å®éšèšç»æ³ã®çš®é¡
ããŸããŸãªçš®é¡ã®å®éšèšç»æ³ãããããããããç°ãªãç 究課é¡ãç¶æ³ã«é©ããŠããŸããäžè¬çãªçš®é¡ã«ã¯ä»¥äžã®ãããªãã®ããããŸãïŒ
1. å®å šç¡äœçºåèšç»æ³ (CRD)
CRDã§ã¯ãå®éšãŠããããåŠçœ®çŸ€ã«ç¡äœçºã«å²ãåœãŠãããŸãããã®èšç»ã¯å®è£ ãç°¡åã§ãããå®éšãŠãããéã«å€§ããªã°ãã€ããããå Žåã«ã¯é©ããŠããªãå¯èœæ§ããããŸãã
äŸïŒ 顧客ãåãã£ã³ããŒã³ã«ç¡äœçºã«å²ãåœãŠããã®åå¿çãæž¬å®ããããšã§ãããŸããŸãªããŒã±ãã£ã³ã°ãã£ã³ããŒã³ã®å¹æããã¹ãããŸãã
2. 乱塿³ (RBD)
RBDã§ã¯ãå®éšãŠãããããŸãå ±éã®ç¹æ§ã«åºã¥ããŠãããã¯ã«ã°ã«ãŒãåãããæ¬¡ã«åãããã¯å ã§åŠçœ®ãç¡äœçºã«å²ãåœãŠãããŸãããã®èšç»ã¯ãããããã³ã°ã«ãã£ãŠå¶åŸ¡ã§ããæ¢ç¥ã®å€åèŠå ãããå Žåã«æçšã§ãã
äŸïŒ ãœãããŠã§ã¢éçºè ã®ããã©ãŒãã³ã¹ããçµéšå¹Žæ°ã§ããããã³ã°ããŠè©äŸ¡ããŸããåçµéšã¬ãã«ïŒäŸïŒ0-2幎ã2-5幎ã5幎以äžïŒå ã§ãéçºè ã¯ç°ãªããœãããŠã§ã¢ãããžã§ã¯ãã«ç¡äœçºã«å²ãåœãŠãããŸãã
3. èŠå èšç»æ³
èŠå èšç»æ³ã§ã¯ã2ã€ä»¥äžã®èŠå ãåæã«æäœããŠãããããçµæå€æ°ã«äžããåå¥ã®å¹æãšè€åçãªå¹æãè©äŸ¡ããŸãããã®èšç»ã¯ã倿°éã®è€éãªé¢ä¿ãæ¢ãã®ã«éåžžã«å¹ççã§ãã
äŸïŒ ååŠåå¿ã®åéã«å¯Ÿããæž©åºŠãšå§åã®äž¡æ¹ã®åœ±é¿ã調æ»ããŸãããã®å®éšã§ã¯ãèãããããã¹ãŠã®æž©åºŠãšå§åã®ã¬ãã«ã®çµã¿åããããã¹ãããŸãã
4. ã©ãã³æ¹æ Œæ³
ã©ãã³æ¹æ Œæ³ã¯ã2ã€ã®ããããã³ã°èŠå ãããå Žåã«äœ¿çšãããŸããååŠçœ®ãåè¡ãšååã«1åãã€çŸããããã«ããŸãããã®èšç»ã¯ããã¹ãã§ããå®éšãŠãããã®æ°ã«å¶éãããå Žåã«æçšã§ãã
äŸïŒ ã¿ã¹ã¯ãå®è¡ãããé åºãå¶åŸ¡ããªãããç°ãªãåŸæ¥å¡ã®ç°ãªãã¿ã¹ã¯ã«ãããããã©ãŒãã³ã¹ããã¹ãããŸãã
5. å埩枬å®ãã¶ã€ã³
å埩枬å®ãã¶ã€ã³ã§ã¯ãåãå®éšãŠããããç°ãªãæ¡ä»¶äžã§è€æ°å枬å®ãããŸãããã®èšç»ã¯ãçµæçãªå€åãç ç©¶ããããåãå人ã«å¯Ÿããç°ãªãåŠçœ®ã®å¹æãæ¯èŒãããããã®ã«æçšã§ãã
äŸïŒ åå è ãç°ãªãçš®é¡ã®é£²æïŒäŸïŒã³ãŒããŒããè¶ãæ°ŽïŒãæåããåŸã®èªç¥èœåãæ°æéã«ããã£ãŠè¿œè·¡ããŸãã
6. A/Bãã¹ã
A/Bãã¹ãã¯ãããŒã±ãã£ã³ã°ããŠã§ãéçºã§äžè¬çã«äœ¿çšãããç¹å®ã®ã¿ã€ãã®å®éšèšç»æ³ã§ãããŠã§ãããŒãžãåºåããŸãã¯ãã®ä»ã®èŠçŽ ã®2ã€ã®ããŒãžã§ã³ãæ¯èŒããŠãã©ã¡ãã®ããŒãžã§ã³ãããè¯ãããã©ãŒãã³ã¹ãçºæ®ãããã倿ããŸãã
äŸïŒ 2ã€ã®ç°ãªããŠã§ããµã€ãã¬ã€ã¢ãŠããæ¯èŒããŠãã©ã¡ãã®ã¬ã€ã¢ãŠããããé«ãã³ã³ããŒãžã§ã³çããããããã確èªããŸãã
å®éšèšç»ã®ã¹ããã
å®éšã®èšèšãšå®æœã®ããã»ã¹ã«ã¯ãéåžžã以äžã®ã¹ããããå«ãŸããŸãïŒ
1. ç 究課é¡ãšç®çã®å®çŸ©
çããããšããŠããç 究課é¡ãšãå®éšã§éæãããå ·äœçãªç®çãæç¢ºã«è¿°ã¹ãŸããäœãæããã«ãããã§ããïŒæãŸããçµæã¯äœã§ããïŒ
äŸïŒ ç 究課é¡ïŒæ°ãããœãŒã·ã£ã«ã¡ãã£ã¢åºåãã£ã³ããŒã³ã¯ãŠã§ããµã€ãã®ãã©ãã£ãã¯ãå¢å ããããïŒ
ç®çïŒæ°ãããã£ã³ããŒã³ã以åã®ãã£ã³ããŒã³ãšæ¯èŒããŠãŠã§ããµã€ãã®ãã©ãã£ãã¯ãå°ãªããšã20%å¢å ããããã©ããã倿ããã
2. èŠå ãšçµæå€æ°ã®ç¹å®
æäœããç¬ç«å€æ°ïŒèŠå ïŒãšæž¬å®ããåŸå±å€æ°ïŒçµæïŒãç¹å®ããŸããåèŠå ã®æœåšçãªå€ã®ç¯å²ãšãçµæå€æ°ãã©ã®ããã«æž¬å®ããããæ€èšããŸãã
äŸïŒ èŠå ïŒãœãŒã·ã£ã«ã¡ãã£ã¢åºåãã£ã³ããŒã³ïŒæ°ãããã® vs. å€ããã®ïŒ
çµæå€æ°ïŒãŠã§ããµã€ãã®ãã©ãã£ãã¯ïŒé±ããšã®èšªåè
æ°ïŒ
3. é©åãªå®éšèšç»æ³ã®éžæ
ç 究課é¡ãç®çãå©çšå¯èœãªãªãœãŒã¹ã«é©ããå®éšèšç»æ³ãéžæããŸããèŠå ã®æ°ãäº€çµ¡å€æ°ã®å¯èœæ§ãããã³æãŸããå¶åŸ¡ã®ã¬ãã«ãèæ ®ããŸãã
äŸïŒ æ°æ§ã®åºåãã£ã³ããŒã³ãæ¯èŒããããã®A/Bãã¹ãã
4. ãµã³ãã«ãµã€ãºã®æ±ºå®
çµ±èšçã«ææãªå¹æãæ€åºããããã«å¿ èŠãªé©åãªãµã³ãã«ãµã€ãºãèšç®ããŸããããã¯ãæãŸããçµ±èšçæ€åºåãæåŸ ããã广éãããã³çµæå€æ°ã®ã°ãã€ãã«äŸåããŸããçµ±èšãœãããŠã§ã¢ããªã³ã©ã€ã³èšç®æ©ã䜿çšããŠé©åãªãµã³ãã«ãµã€ãºã決å®ããŸãã
äŸïŒ éå»ã®ããŒã¿ãšæãŸããæ€åºåã«åºã¥ãã80%ã®æ€åºåã§ãã©ãã£ãã¯ã®20%å¢å ãæ€åºããã«ã¯ããã£ã³ããŒã³ããã2000人ã®ãŠã§ããµã€ã蚪åè ïŒåããŒãžã§ã³ã«1000人ïŒãå¿ èŠã§ãããšå€æããã
5. ãããã³ã«ã®äœæ
èŠå ã®æäœãããŒã¿åéãããã³ç¡é¢ä¿ãªå€æ°ã®å¶åŸ¡ã®æé ãå«ããå®éšã®ãã¹ãŠã®åŽé¢ãæŠèª¬ãã詳现ãªãããã³ã«ãäœæããŸããããã«ãããäžè²«æ§ãšåçŸæ§ã確ä¿ãããŸãã
äŸïŒ ãããã³ã«ã«ã¯ãåºåã®è¡šç€ºæ¹æ³ããŠã§ããµã€ãã®ãã©ãã£ãã¯ã®æž¬å®æ¹æ³ãããã³ãŠãŒã¶ãŒã®äººå£çµ±èšæ å ±ã®è¿œè·¡æ¹æ³ãæŠèª¬ããå¿ èŠããããŸãã
6. å®éšã®å®æœ
ãããã³ã«ã«æ éã«åŸããããŒã¿ãæ£ç¢ºãã€äžè²«ããŠåéããŸããå®éšãç¶¿å¯ã«ç£èŠããçºçããäºæãã¬åé¡ã«å¯ŸåŠããŸãã
äŸïŒ A/Bãã¹ãã2é±é宿œããåãã£ã³ããŒã³ãåçã«è¡šç€ºãããããã«ããæè¡çãªåé¡ãç£èŠããŸãã
7. ããŒã¿ã®åæ
é©åãªçµ±èšçææ³ã䜿çšããŠããŒã¿ãåæããèŠå ãçµæå€æ°ã«çµ±èšçã«ææãªåœ±é¿ãäžããŠãããã©ããã倿ããŸããä¿¡é Œåºéãšpå€ãèšç®ããŠã蚌æ ã®åŒ·ããè©äŸ¡ããŸãã
äŸïŒ tæ€å®ã䜿çšããŠãæ°æ§ã®ãã£ã³ããŒã³ã®å¹³åãŠã§ããµã€ããã©ãã£ãã¯ãæ¯èŒããŸããpå€ãèšç®ããŠããã®å·®ãçµ±èšçã«ææã§ãããã©ããã倿ããŸãã
8. çµè«ã®å°åºãšæèš
ããŒã¿åæã®çµæãè§£éããèŠå ãçµæå€æ°ã«äžãã圱é¿ã«ã€ããŠçµè«ãå°ããŸãã調æ»çµæã«åºã¥ããŠæèšãè¡ãããããªãç ç©¶ã®é åãç¹å®ããŸãã
äŸïŒ på€ã0.05æªæºã§ãæ°ãããã£ã³ããŒã³ãçµ±èšçã«ææãªãã©ãã£ãã¯ã®å¢å ã瀺ããå Žåãæ°ãããã£ã³ããŒã³ã¯å¹æçã§ãããšçµè«ä»ãããã®ç¶ç¶çãªäœ¿çšãæšå¥šããŸãã
çµ±èšçèå¯
çµ±èšåæã¯å®éšèšç»æ³ã®äžå¯æ¬ ãªéšåã§ããäž»èŠãªçµ±èšçæŠå¿µã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- 仮説æ€å®ïŒ èŠå ãšçµæã®é¢ä¿ã«ã€ããŠã®ä»®èª¬ãç«ãŠãæ€å®ããŸãã
- çµ±èšçæææ§ïŒ 芳å¯ãããçµæãå¶ç¶ã«ãããã®ããçã®å¹æã«ãããã®ãã倿ããŸãã
- ä¿¡é ŒåºéïŒ çã®æ¯æ°ïŒpopulation parameterïŒãå«ãŸããå¯èœæ§ãé«ãå€ã®ç¯å²ãæšå®ããŸãã
- ååž°åæïŒ çµ±èšæ¹çšåŒã䜿çšããŠãèŠå ãšçµæã®é¢ä¿ãã¢ãã«åããŸãã
- åæ£åæ (ANOVA)ïŒ è€æ°ã®ã°ã«ãŒãã®å¹³åãæ¯èŒããŠãææãªå·®ããããã©ããã倿ããŸãã
çµ±èšå°éå®¶ãšçžè«ããŠãå®éšèšç»ãšããŒã¿ã«é©ããçµ±èšçææ³ã䜿çšããŠããããšã確èªããŠãã ããã
å®éšèšç»ã«ãããã°ããŒãã«ãªèæ ®äºé
ã°ããŒãã«ãªæèã§å®éšãè¡ãå Žåãããã€ãã®è¿œå ã®èæ ®äºé ãéèŠã§ãïŒ
- æåã®éãïŒ å®éšã®çµæã«åœ±é¿ãäžããå¯èœæ§ã®ããæ åºŠã信念ãè¡åã«ãããæåã®éããèæ ®ããŸããå®éšèšç»ãšã³ãã¥ãã±ãŒã·ã§ã³æŠç¥ãããã«åãããŠèª¿æŽããŸããäŸãã°ããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ïŒUXïŒç ç©¶ã§ã¯ããã¶ã€ã³ã®å¥œã¿ã¯æåã«ãã£ãŠå€§ããç°ãªãå ŽåããããŸãã
- èšèªã®å£ïŒ ãã¹ãŠã®è³æãæ£ç¢ºã«ç¿»èš³ãããæåçã«é©åã§ããããšã確èªããŸããå¿ èŠã«å¿ããŠéèš³è ã翻蚳è ã䜿çšããŠãåå è ãšã³ãã¥ãã±ãŒã·ã§ã³ããšããŸãã
- èŠå¶èŠä»¶ïŒ å®éšã宿œãããåœã§é©çšããããã¹ãŠã®èŠå¶ãšå«çã¬ã€ãã©ã€ã³ãèªèããéµå®ããŸããããã¯ãèšåºè©Šéšããã®ä»ã®äººéã察象ãšããç ç©¶ã«ãããŠç¹ã«éèŠã§ããåœã«ãã£ãŠãã€ã³ãã©ãŒã ãã»ã³ã³ã»ã³ããããŒã¿ãã©ã€ãã·ãŒãç ç©¶å«çã«é¢ããèŠå¶ãç°ãªããŸãã
- ã€ã³ãã©ã®éãïŒ ã€ã³ã¿ãŒãããã¢ã¯ã»ã¹ãé»åã®ä¿¡é Œæ§ãäº€éææ®µãªã©ã®ã€ã³ãã©ã®éããèæ ®ããŸãããããã¯å®éšã®å®çŸå¯èœæ§ã«åœ±é¿ãäžããå¯èœæ§ããããŸãããããã®èª²é¡ã軜æžããããã«ãããã«å¿ããŠèšç»ããŸãã
- ã¿ã€ã ãŸãŒã³ïŒ å®éšã®ã¹ã ãŒãºãªå®è¡ã確ä¿ããããã«ãç°ãªãã¿ã€ã ãŸãŒã³éã§ã¹ã±ãžã¥ãŒã«ãšã³ãã¥ãã±ãŒã·ã§ã³ã調æŽããŸãã
- ããŒã¿ãã©ã€ãã·ãŒïŒ ç°ãªãåœã®åå è ããããŒã¿ãåéããã³åŠçããéã«ã¯ãGDPRïŒäžè¬ããŒã¿ä¿è·èŠåïŒãCCPAïŒã«ãªãã©ã«ãã¢å·æ¶è²»è ãã©ã€ãã·ãŒæ³ïŒãªã©ã®ããŒã¿ãã©ã€ãã·ãŒèŠå¶ã«æ³šæããŸãã
äŸïŒ å€åœç±äŒæ¥ãç°ãªãåœã§ãŠã§ããµã€ãã®A/Bãã¹ãã宿œããå ŽåããŠã§ããµã€ãã®ã³ã³ãã³ããæ£ç¢ºã«ç¿»èš³ããããŠãŒã¶ãŒã€ã³ã¿ãŒãã§ãŒã¹ãæåçã«é©åã§ãããããŒã¿ãã©ã€ãã·ãŒããªã·ãŒãå°åã®èŠå¶ã«æºæ ããŠããããšã確èªããå¿ èŠããããŸãã
å®éšèšç»ã«ãããå«ççèæ ®äºé
å«ççèæ ®äºé ã¯ãç¹ã«äººéã察象ãšããå Žåãå®éšèšç»ã«ãããŠæãéèŠã§ããäž»èŠãªå«çååã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ã€ã³ãã©ãŒã ãã»ã³ã³ã»ã³ãïŒ åå è ã¯ãåå ã«åæããåã«ãå®éšã®ç®çãæé ããªã¹ã¯ãããã³å©çã«ã€ããŠååã«ç¥ããããªããã°ãªããŸããã
- æ©å¯æ§ïŒ åå è ããåéãããããŒã¿ã¯æ©å¯æ±ããšããäžæ£ã¢ã¯ã»ã¹ããä¿è·ãããªããã°ãªããŸããã
- å¿åæ§ïŒ å¯èœãªéããåå è ã®ãã©ã€ãã·ãŒãä¿è·ããããã«ããŒã¿ã¯å¿åã§åéãããã¹ãã§ãã
- åè¡ïŒ å®éšã®æœåšçãªå©çã¯ãåå è ãžã®ãªã¹ã¯ãäžåãã¹ãã§ãã
- å ¬æ£ïŒ åå è ã¯å ¬æ£ãã€å ¬å¹³ã«éžã°ããã©ã®ã°ã«ãŒããå®éšã«ãã£ãŠäžåè¡¡ã«è² æ ãè² ã£ããå©çãåŸããããã¹ãã§ã¯ãããŸããã
- äººæ Œã®å°éïŒ ãã¹ãŠã®åå è ã®èªåŸæ§ãšå°å³ãå°éããŸãã
人éã察象ãšããå®éšã宿œããåã«ãæ©é¢å¯©æ»å§å¡äŒïŒIRBïŒãŸãã¯å«çå§å¡äŒããæ¿èªãåŸãŠãã ããã
å®éšèšç»ã®ããã®ããŒã«ãšãªãœãŒã¹
å®éšèšç»ãšããŒã¿åæãæ¯æŽããããã®ããã€ãã®ããŒã«ãšãªãœãŒã¹ãå©çšå¯èœã§ãïŒ
- çµ±èšãœãããŠã§ã¢ïŒ SPSS, SAS, R, Minitab, Stata
- ãªã³ã©ã€ã³èšç®æ©ïŒ ãµã³ãã«ãµã€ãºèšç®æ©ãçµ±èšçæææ§èšç®æ©
- å®éšèšç»æ³ (DOE) ãœãããŠã§ã¢ïŒ JMP, Design-Expert
- A/Bãã¹ããã©ãããã©ãŒã ïŒ Optimizely, Google Optimize, VWO
- æžç±ãšèšäºïŒ å®éšèšç»æ³ããã³é¢é£ãããã¯ã«é¢ãã倿°ã®æžç±ãèšäºãå©çšå¯èœã§ãã
- ãªã³ã©ã€ã³ã³ãŒã¹ãšã¯ãŒã¯ã·ã§ããïŒ å€ãã®å€§åŠãçµç¹ãå®éšèšç»æ³ã«é¢ãããªã³ã©ã€ã³ã³ãŒã¹ãã¯ãŒã¯ã·ã§ãããæäŸããŠããŸãã
çµè«
å®éšèšç»æ³ã¯ãç¥èãçã¿åºããããã»ã¹ãæé©åããã€ãããŒã·ã§ã³ãæšé²ããããã®åŒ·åãªããŒã«ã§ããå®éšèšç»æ³ã®åºæ¬ååãšæ¹æ³è«ãçè§£ããããšã«ãããç ç©¶è ãã€ãããŒã¿ãŒã¯ãææçŸ©ãªæŽå¯ãšåœ±é¿åã®ããçµæã«ã€ãªããå³å¯ã§ä¿¡é Œæ§ã®é«ãå®éšã宿œã§ããŸããç 究宀ãå·¥å ŽãããŒã±ãã£ã³ã°éšéããŸãã¯ç ç©¶æ©é¢ã§åããŠãããã©ããã«ããããããå®éšèšç»æ³ãç¿åŸããããšã¯ã仿¥ã®ããŒã¿é§ååã®äžçã§æåããããã«äžå¯æ¬ ã§ããã°ããŒãã«ããã³å«ççãªèæ ®äºé ã«çްå¿ã®æ³šæãæããªãããç¹å®ã®ç¶æ³ã«åãããŠå®éšèšç»ã調æŽããããšãå¿ããªãã§ãã ããã
ãã®ã¬ã€ãã¯ãå®éšèšç»æ³ãçè§£ããããã®ç¢ºåºããåºç€ãæäŸããŸããæé©ãªã¢ãããŒãã¯ãç¹å®ã®ç 究課é¡ãšå©çšå¯èœãªãªãœãŒã¹ã«äŸåããããšãå¿ããªãã§ãã ãããããªãã®åéã§å ãè¡ãããã«ãç¶ç¶çã«åŠã³ãæ¹æ³è«ãé©å¿ãããŠãã ããã
ãããªããªãœãŒã¹
ããæ·±ãåŠç¿ã®ããã«ããããã®è¿œå ãªãœãŒã¹ãæ€èšããŠãã ããïŒ
- æžç±ïŒ ãDesign and Analysis of Experimentsã by Douglas MontgomeryããStatistical Design and Analysis of Experimentsã by Robert L. Mason, Richard F. Gunst, and James L. Hess
- ãªã³ã©ã€ã³ã³ãŒã¹ïŒ CourseraãedXãããã³åæ§ã®ãã©ãããã©ãŒã ããå®éšèšç»æ³ãšçµ±èšã«é¢ããã³ãŒã¹ãæäŸããŠããŸãã
- åŠè¡éèªïŒ çµ±èšåŠãç ç©¶æ¹æ³ãããã³ç¹å®ã®ç ç©¶åéã«çŠç¹ãåœãŠãéèªã¯ããã°ãã°å®éšèšç»æ³ã«é¢ããèšäºãæ²èŒããŠããŸãã