Pythonã䜿çšããŠããã¹ã¬ã¹ããŒã¿å§çž®ã¢ã«ãŽãªãºã ã®åºæ¬ã§ãããããã³ç¬Šå·åã®åçãšå®è·µçãªå®è£ ãæ¢æ±ããŸããéçºè ãããŒã¿æå¥œå®¶åãã®è©³çްãªã¬ã€ãã§ãã
ããŒã¿å§çž®ããã¹ã¿ãŒããïŒPythonã§ã®ãããã³ç¬Šå·åã®è©³çŽ°ãªæ¢æ±
仿¥ã®ããŒã¿é§åå瀟äŒã§ã¯ãå¹ççãªããŒã¿ä¿åãšéä¿¡ãäžå¯æ¬ ã§ããåœéçãªeã³ããŒã¹ãã©ãããã©ãŒã ã®å€§èŠæš¡ããŒã¿ã»ããã管çããå Žåã§ããã°ããŒãã«ãããã¯ãŒã¯ãä»ããŠãã«ãã¡ãã£ã¢ã³ã³ãã³ãã®é ä¿¡ãæé©åããå Žåã§ããããŒã¿å§çž®ã¯éèŠãªåœ¹å²ãæãããŸããããŸããŸãªæè¡ã®äžã§ããããã³ç¬Šå·åã¯ããã¹ã¬ã¹ããŒã¿å§çž®ã®åºç€ãšããŠéç«ã£ãŠããŸãããã®èšäºã§ã¯ããããã³ç¬Šå·åã®è€éãããã®åºæ¬åçããããŠå€çšéãªPythonããã°ã©ãã³ã°èšèªã䜿çšãããã®å®è·µçãªå®è£ ã«ã€ããŠè©³ãã説æããŸãã
ããŒã¿å§çž®ã®å¿ èŠæ§ãçè§£ãã
ããžã¿ã«æ å ±ã®ææ°é¢æ°çãªå¢å ã¯ã倧ããªèª²é¡ããããããŸãããã®ããŒã¿ãä¿åããã«ã¯ããŸããŸãå¢å€§ããã¹ãã¬ãŒãžå®¹éãå¿ èŠã§ããããããã¯ãŒã¯ãä»ããŠéä¿¡ããã«ã¯ã貎éãªåž¯åå¹ ãšæéãæ¶è²»ãããŸãããã¹ã¬ã¹ããŒã¿å§çž®ã¯ãæ å ±ã倱ãããšãªãããŒã¿ã®ãµã€ãºãåæžããããšã§ããããã®åé¡ã«å¯ŸåŠããŸããã€ãŸããå ã®ããŒã¿ã¯ãå§çž®ããã圢åŒããå®å šã«åæ§ç¯ã§ããŸãããããã³ç¬Šå·åã¯ããã®ãããªæè¡ã®å¥œäŸã§ããããã¡ã€ã«ã¢ãŒã«ã€ãïŒZIPãã¡ã€ã«ãªã©ïŒããããã¯ãŒã¯ãããã³ã«ãç»å/ãªãŒãã£ãªãšã³ã³ãŒãã£ã³ã°ãªã©ãããŸããŸãªã¢ããªã±ãŒã·ã§ã³ã§åºã䜿çšãããŠããŸãã
ãããã³ç¬Šå·åã®åºæ¬åç
ãããã³ç¬Šå·åã¯ãå ¥åæåã«çºçé »åºŠã«åºã¥ããŠå¯å€é·ã³ãŒããå²ãåœãŠã貪欲æ³ã¢ã«ãŽãªãºã ã§ããåºæ¬çãªèãæ¹ã¯ãããé »ç¹ã«çºçããæåã«ã¯ããçãã³ãŒãããããŸãé »ç¹ã«çºçããªãæåã«ã¯ããé·ãã³ãŒããå²ãåœãŠãããšã§ãããã®æŠç¥ã«ããããšã³ã³ãŒããããã¡ãã»ãŒãžã®å šäœçãªé·ããæå°éã«æããå§çž®ãå®çŸããŸãã
é »åºŠåæïŒåºç€
ãããã³ç¬Šå·åã®æåã®ã¹ãããã¯ãå ¥åããŒã¿å ã®åäžæã®æåã®é »åºŠã決å®ããããšã§ããããšãã°ãè±èªã®ããã¹ãã§ã¯ãæåãeãã¯ãzããããã¯ããã«äžè¬çã§ãããããã®çºçåæ°ãã«ãŠã³ãããããšã«ãããã©ã®æåãæçã®ãã€ããªã³ãŒããåãåãããç¹å®ã§ããŸãã
ãããã³ããªãŒã®æ§ç¯
ãããã³ç¬Šå·åã®äžå¿ã¯ããããã³ããªãŒãšåŒã°ãããã€ããªããªãŒãæ§ç¯ããããšã«ãããŸãããã®ããªãŒã¯å埩çã«æ§ç¯ãããŸãã
- åæåïŒåäžæã®æåã¯ããã®éã¿ããã®é »åºŠã§ããèããŒããšããŠæ±ãããŸãã
- ããŒãžïŒæãäœãé »åºŠãæã€2ã€ã®ããŒããç¹°ãè¿ãããŒãžãããŠãæ°ãã芪ããŒãã圢æãããŸãã芪ããŒãã®é »åºŠã¯ããã®åã®é »åºŠã®åèšã§ãã
- å埩ïŒãã®ããŒãžããã»ã¹ã¯ãã«ãŒãã§ãã1ã€ã®ããŒãã ããæ®ããŸã§ç¶ããŸãã
ãã®ããã»ã¹ã«ãããæãé«ãé »åºŠãæã€æåãããªãŒã®ã«ãŒãã«è¿ã¥ãããã¹é·ãçããªãããã€ããªã³ãŒããçããªããŸãã
ã³ãŒãã®çæ
ãããã³ããªãŒãæ§ç¯ããããšãåæåã®ãã€ããªã³ãŒãã¯ãã«ãŒããã察å¿ããèããŒããŸã§ããªãŒããã©ããŒã¹ããããšã«ãã£ãŠçæãããŸããæ £äŸãšããŠãå·Šã®åãžã®ç§»åã«ã¯ã0ããå²ãåœãŠãããå³ã®åãžã®ç§»åã«ã¯ã1ããå²ãåœãŠãããŸãããã¹äžã§çºçããã0ããšã1ãã®ã·ãŒã±ã³ã¹ãããã®æåã®ãããã³ã³ãŒãã圢æããŸãã
äŸïŒ
ç°¡åãªæååãthis is an exampleããèããŠã¿ãŸãããã
é »åºŠãèšç®ããŠã¿ãŸãããïŒ
- 't': 2
- 'h': 1
- 'i': 2
- 's': 3
- ' ': 3
- 'a': 2
- 'n': 1
- 'e': 2
- 'x': 1
- 'm': 1
- 'p': 1
- 'l': 1
ãããã³ããªãŒã®æ§ç¯ã«ã¯ãæãé »åºŠã®äœãããŒãã®ç¹°ãè¿ãããŒãžãå«ãŸããŸããçµæã®ã³ãŒãã¯ããsããšã ãïŒã¹ããŒã¹ïŒããhãããnãããxãããmãããpãããŸãã¯ãlããããçãã³ãŒããæã€ããã«å²ãåœãŠãããŸãã
ãšã³ã³ãŒãã£ã³ã°ãšãã³ãŒãã£ã³ã°
ãšã³ã³ãŒãã£ã³ã°ïŒå ã®ããŒã¿ããšã³ã³ãŒãããã«ã¯ãåæåã察å¿ãããããã³ã³ãŒãã«çœ®ãæããŸããçµæã®ãã€ããªã³ãŒãã®ã·ãŒã±ã³ã¹ãå§çž®ãããããŒã¿ã圢æããŸãã
ãã³ãŒãã£ã³ã°ïŒããŒã¿ãè§£åããã«ã¯ããã€ããªã³ãŒãã®ã·ãŒã±ã³ã¹ããã©ããŒã¹ãããŸãããããã³ããªãŒã®ã«ãŒãããå§ããŠãåã0ããŸãã¯ã1ããããªãŒã®äžãžã®ãã©ããŒãµã«ãã¬ã€ãããŸããèããŒãã«å°éãããšã察å¿ããæåãåºåãããæ¬¡ã®ã³ãŒãã®ã«ãŒããããã©ããŒãµã«ãåéãããŸãã
Pythonã§ã®ãããã³ç¬Šå·åã®å®è£
Pythonã®è±å¯ãªã©ã€ãã©ãªãšæç¢ºãªæ§æã«ããããããã³ç¬Šå·åãªã©ã®ã¢ã«ãŽãªãºã ãå®è£ ããã®ã«æé©ã§ããPythonã®å®è£ ãæ§ç¯ããããã®ã¹ããããã€ã¹ãããã®ã¢ãããŒãã䜿çšããŸãã
ã¹ããã1ïŒæåé »åºŠã®èšç®
Pythonã®`collections.Counter`ã䜿çšããŠãå ¥åæååå ã®åæåã®é »åºŠãå¹ççã«èšç®ã§ããŸãã
from collections import Counter
def calculate_frequencies(text):
return Counter(text)
ã¹ããã2ïŒãããã³ããªãŒã®æ§ç¯
ãããã³ããªãŒãæ§ç¯ããã«ã¯ãããŒããè¡šãæ¹æ³ãå¿ èŠã«ãªããŸããåçŽãªã¯ã©ã¹ãŸãã¯ååä»ãã¿ãã«ããã®ç®çã«åœ¹ç«ã¡ãŸãããŸããæãäœãé »åºŠãæã€2ã€ã®ããŒããå¹ççã«æœåºããããã®åªå 床ãã¥ãŒãå¿ èŠã«ãªããŸããPythonã®`heapq`ã¢ãžã¥ãŒã«ã¯ããã«æé©ã§ãã
import heapq
class Node:
def __init__(self, char, freq, left=None, right=None):
self.char = char
self.freq = freq
self.left = left
self.right = right
# Define comparison methods for heapq
def __lt__(self, other):
return self.freq < other.freq
def __eq__(self, other):
if(other == None):
return False
if(not isinstance(other, Node)):
return False
return self.freq == other.freq
def build_huffman_tree(frequencies):
priority_queue = []
for char, freq in frequencies.items():
heapq.heappush(priority_queue, Node(char, freq))
while len(priority_queue) > 1:
left_child = heapq.heappop(priority_queue)
right_child = heapq.heappop(priority_queue)
merged_node = Node(None, left_child.freq + right_child.freq, left_child, right_child)
heapq.heappush(priority_queue, merged_node)
return priority_queue[0] if priority_queue else None
ã¹ããã3ïŒãããã³ã³ãŒãã®çæ
æ§ç¯ããããããã³ããªãŒããã©ããŒã¹ããŠãåæåã®ãã€ããªã³ãŒããçæããŸããååž°é¢æ°ã¯ãã®ã¿ã¹ã¯ã«é©ããŠããŸãã
def generate_huffman_codes(node, current_code="", codes={}):
if node is None:
return
# If it's a leaf node, store the character and its code
if node.char is not None:
codes[node.char] = current_code
return
# Traverse left (assign '0')
generate_huffman_codes(node.left, current_code + "0", codes)
# Traverse right (assign '1')
generate_huffman_codes(node.right, current_code + "1", codes)
return codes
ã¹ããã4ïŒãšã³ã³ãŒãã£ã³ã°ãšãã³ãŒãã£ã³ã°é¢æ°
ã³ãŒããçæãããã®ã§ããšã³ã³ãŒãã£ã³ã°ãšãã³ãŒãã£ã³ã°ã®ããã»ã¹ãå®è£ ã§ããŸãã
def encode(text, codes):
encoded_text = ""
for char in text:
encoded_text += codes[char]
return encoded_text
def decode(encoded_text, root_node):
decoded_text = ""
current_node = root_node
for bit in encoded_text:
if bit == '0':
current_node = current_node.left
else: # bit == '1'
current_node = current_node.right
# If we reached a leaf node
if current_node.char is not None:
decoded_text += current_node.char
current_node = root_node # Reset to root for next character
return decoded_text
ãã¹ãŠããŸãšããïŒå®å šãªãããã³ã¯ã©ã¹
ããæŽçãããå®è£ ã®ããã«ããããã®æ©èœãã¯ã©ã¹å ã«ã«ãã»ã«åã§ããŸãã
import heapq
from collections import Counter
class HuffmanNode:
def __init__(self, char, freq, left=None, right=None):
self.char = char
self.freq = freq
self.left = left
self.right = right
def __lt__(self, other):
return self.freq < other.freq
class HuffmanCoding:
def __init__(self, text):
self.text = text
self.frequencies = self._calculate_frequencies(text)
self.root = self._build_huffman_tree(self.frequencies)
self.codes = self._generate_huffman_codes(self.root)
def _calculate_frequencies(self, text):
return Counter(text)
def _build_huffman_tree(self, frequencies):
priority_queue = []
for char, freq in frequencies.items():
heapq.heappush(priority_queue, HuffmanNode(char, freq))
while len(priority_queue) > 1:
left_child = heapq.heappop(priority_queue)
right_child = heapq.heappop(priority_queue)
merged_node = HuffmanNode(None, left_child.freq + right_child.freq, left_child, right_child)
heapq.heappush(priority_queue, merged_node)
return priority_queue[0] if priority_queue else None
def _generate_huffman_codes(self, node, current_code="", codes={}):
if node is None:
return
if node.char is not None:
codes[node.char] = current_code
return
self._generate_huffman_codes(node.left, current_code + "0", codes)
self._generate_huffman_codes(node.right, current_code + "1", codes)
return codes
def encode(self):
encoded_text = ""
for char in self.text:
encoded_text += self.codes[char]
return encoded_text
def decode(self, encoded_text):
decoded_text = ""
current_node = self.root
for bit in encoded_text:
if bit == '0':
current_node = current_node.left
else: # bit == '1'
current_node = current_node.right
if current_node.char is not None:
decoded_text += current_node.char
current_node = self.root
return decoded_text
# Example Usage:
text_to_compress = "this is a test of huffman coding in python. it is a global concept."
huffman = HuffmanCoding(text_to_compress)
encoded_data = huffman.encode()
print(f"Original Text: {text_to_compress}")
print(f"Encoded Data: {encoded_data}")
print(f"Original Size (approx bits): {len(text_to_compress) * 8}")
print(f"Compressed Size (bits): {len(encoded_data)}")
decoded_data = huffman.decode(encoded_data)
print(f"Decoded Text: {decoded_data}")
# Verification
assert text_to_compress == decoded_data
ãããã³ç¬Šå·åã®å©ç¹ãšå¶é
å©ç¹ïŒ
- æé©ãªãã¬ãã£ãã¯ã¹ã³ãŒãïŒãããã³ç¬Šå·åã¯ãæé©ãªãã¬ãã£ãã¯ã¹ã³ãŒããçæããŸããã€ãŸããã©ã®ã³ãŒããå¥ã®ã³ãŒãã®ãã¬ãã£ãã¯ã¹ã§ã¯ãããŸããããã®ããããã£ã¯ãæç¢ºãªãã³ãŒãã£ã³ã°ã«äžå¯æ¬ ã§ãã
- å¹çïŒåäžã§ãªãæåååžãæã€ããŒã¿ã«å¯ŸããŠãè¯å¥œãªå§çž®çãæäŸããŸãã
- ã·ã³ãã«ãïŒã¢ã«ãŽãªãºã ã¯ãçè§£ããŠå®è£ ããã®ãæ¯èŒçç°¡åã§ãã
- ãã¹ã¬ã¹ïŒå ã®ããŒã¿ã®å®å šãªåæ§ç¯ãä¿èšŒããŸãã
å¶éïŒ
- 2åã®ãã¹ãå¿ èŠïŒã¢ã«ãŽãªãºã ã¯éåžžãããŒã¿ã2åãã¹ããå¿ èŠããããŸãã1åã¯é »åºŠãèšç®ããŠããªãŒãæ§ç¯ããããããã1åã¯ãšã³ã³ãŒãããããã§ãã
- ãã¹ãŠã®ååžã«æé©ã§ã¯ãããŸããïŒéåžžã«åäžãªæåååžãæã€ããŒã¿ã®å Žåãå§çž®çã¯ãããããã«ãªãå¯èœæ§ããããŸãã
- ãªãŒããŒãããïŒãããã³ããªãŒïŒãŸãã¯ã³ãŒãããŒãã«ïŒã¯ãå§çž®ããŒã¿ãšãšãã«éä¿¡ããå¿ èŠããããŸããããã«ãããç¹ã«å°ããªãã¡ã€ã«ã®å ŽåãããçšåºŠã®ãªãŒããŒãããã远å ãããŸãã
- ã³ã³ããã¹ãããã®ç¬ç«æ§ïŒåæåãç¬ç«ããŠæ±ããæåãåºçŸããã³ã³ããã¹ããèæ ®ããªããããç¹å®ã®çš®é¡ã®ããŒã¿ã«å¯Ÿããæå¹æ§ãå¶éãããå¯èœæ§ããããŸãã
ã°ããŒãã«ãªã¢ããªã±ãŒã·ã§ã³ãšèæ ®äºé
ãããã³ç¬Šå·åã¯ããã®å¹Žéœ¢ã«ãããããããã°ããŒãã«ãªæè¡ç°å¢ã§åŒãç¶ãé¢é£æ§ããããŸãããã®ååã¯ãå€ãã®ææ°ã®å§çž®ã¹ããŒã ã®åºç€ãšãªã£ãŠããŸãã
- ãã¡ã€ã«ã¢ãŒã«ã€ãïŒDeflateïŒZIPãGZIPãPNGã«å«ãŸããïŒãªã©ã®ã¢ã«ãŽãªãºã ã§äœ¿çšãããããŒã¿ã¹ããªãŒã ãå§çž®ããŸãã
- ç»åããã³ãªãŒãã£ãªå§çž®ïŒããè€éãªã³ãŒããã¯ã®äžéšã圢æããŸããããšãã°ãJPEGå§çž®ã§ã¯ããããã³ç¬Šå·åã¯ãå§çž®ã®ä»ã®æ®µéã®åŸã§ãšã³ããããŒç¬Šå·åã«äœ¿çšãããŸãã
- ãããã¯ãŒã¯éä¿¡ïŒããŒã¿ãã±ããã®ãµã€ãºãçž®å°ããããã«é©çšã§ããåœéãããã¯ãŒã¯å šäœã§ããé«éã§å¹ççãªéä¿¡ã«ã€ãªãããŸãã
- ããŒã¿ã¹ãã¬ãŒãžïŒã°ããŒãã«ãªãŠãŒã¶ãŒããŒã¹ã«ãµãŒãã¹ãæäŸããããŒã¿ããŒã¹ãã¯ã©ãŠãã¹ãã¬ãŒãžãœãªã¥ãŒã·ã§ã³ã§ã¹ãã¬ãŒãžã¹ããŒã¹ãæé©åããããã«äžå¯æ¬ ã§ãã
ã°ããŒãã«ãªå®è£ ãæ€èšããéã«ã¯ãæåã»ããïŒUnicode察ASCIIïŒãããŒã¿éãããã³ç®çã®å§çž®çãªã©ã®èŠçŽ ãéèŠã«ãªããŸããéåžžã«å€§èŠæš¡ãªããŒã¿ã»ããã®å Žåãæé«ã®ããã©ãŒãã³ã¹ãéæããã«ã¯ãããé«åºŠãªã¢ã«ãŽãªãºã ãŸãã¯ãã€ããªããã¢ãããŒããå¿ èŠã«ãªãå ŽåããããŸãã
ãããã³ç¬Šå·åãšä»ã®å§çž®ã¢ã«ãŽãªãºã ã®æ¯èŒ
ãããã³ç¬Šå·åã¯ãåºæ¬çãªãã¹ã¬ã¹ã¢ã«ãŽãªãºã ã§ãããã ããä»ã®ããŸããŸãªã¢ã«ãŽãªãºã ã¯ãå§çž®çãé床ãããã³è€éãã®éã®ããŸããŸãªãã¬ãŒããªããæäŸããŸãã
- ã©ã³ã¬ã³ã°ã¹ãšã³ã³ãŒãã£ã³ã°ïŒRLEïŒïŒç¹°ãè¿ãæåã®é·ãå®è¡ãããããŒã¿ã«ã·ã³ãã«ã§å¹æçã§ãïŒäŸïŒ`AAAAABBBCC`ã¯`5A3B2C`ã«ãªããŸãïŒããã®ãããªãã¿ãŒã³ããªãããŒã¿ã«ã¯å¹æããããŸããã
- Lempel-ZivïŒLZïŒãã¡ããªãŒïŒLZ77ãLZ78ãLZWïŒïŒãããã®ã¢ã«ãŽãªãºã ã¯èŸæžããŒã¹ã§ããç¹°ãè¿ãããæåã®ã·ãŒã±ã³ã¹ãã以åã®çºçãžã®åç §ã«çœ®ãæããŸããDEFLATEïŒZIPããã³GZIPã§äœ¿çšïŒãªã©ã®ã¢ã«ãŽãªãºã ã¯ãLZ77ãšãããã³ç¬Šå·åãçµã¿åãããŠãããã©ãŒãã³ã¹ãåäžãããŸããLZããªã¢ã³ãã¯ãå®éã«ã¯åºã䜿çšãããŠããŸãã
- ç®è¡ç¬Šå·åïŒç¹ã«æªãã 確çååžã®å Žåããããã³ç¬Šå·åãããäžè¬çã«é«ãå§çž®çãéæããŸãããã ããèšç®éãããå€ããç¹èš±ãååŸã§ããŸãã
ãããã³ç¬Šå·åã®äž»ãªå©ç¹ã¯ããã®ã·ã³ãã«ããšããã¬ãã£ãã¯ã¹ã³ãŒãã®æé©æ§ã®ä¿èšŒã§ããå€ãã®æ±çšå§çž®ã¿ã¹ã¯ãç¹ã«LZãªã©ã®ä»ã®ææ³ãšçµã¿åããããšãå ç¢ã§å¹ççãªãœãªã¥ãŒã·ã§ã³ãæäŸããŸãã
é«åºŠãªãããã¯ãšãããªãæ¢æ±
ããã«æ·±ãæãäžãããå Žåã¯ãããã€ãã®é«åºŠãªãããã¯ãæ€èšãã䟡å€ããããŸãã
- é©å¿åãããã³ç¬Šå·åïŒãã®ããªãšãŒã·ã§ã³ã§ã¯ããããã³ããªãŒãšã³ãŒãã¯ãããŒã¿ãåŠçãããŠãããšãã«åçã«æŽæ°ãããŸããããã«ãããåå¥ã®é »åºŠåæãã¹ãäžèŠã«ãªããã¹ããªãŒãã³ã°ããŒã¿ã®å Žåããæåã®é »åºŠãæéã®çµéãšãšãã«å€åããå Žåã«ãããå¹ççã«ãªãå¯èœæ§ããããŸãã
- æ£èŠãããã³ã³ãŒãïŒãããã¯ãããã³ã³ãã¯ãã«è¡šçŸã§ããæšæºåããããããã³ã³ãŒãã§ãããã³ãŒãããŒãã«ãä¿åãããªãŒããŒããããåæžããŸãã
- ä»ã®ã¢ã«ãŽãªãºã ãšã®çµ±åïŒDEFLATEãªã©ã®åŒ·åãªå§çž®æšæºã圢æããããã«ããããã³ç¬Šå·åãLZ77ãªã©ã®ã¢ã«ãŽãªãºã ãšã©ã®ããã«çµã¿åããããŠããããçè§£ããŸãã
- æ å ±çè«ïŒãšã³ããããŒãã·ã£ãã³ã®ãœãŒã¹ç¬Šå·åå®çãªã©ã®æŠå¿µã調ã¹ãããšã§ãããŒã¿å§çž®ã®éçã«é¢ããçè«çãªçè§£ãåŸãããŸãã
çµè«
ãããã³ç¬Šå·åã¯ãããŒã¿å§çž®ã®åéã«ãããåºæ¬çãã€ãšã¬ã¬ã³ããªã¢ã«ãŽãªãºã ã§ããæ å ±ãæå€±ããããšãªãããŒã¿ã®ãµã€ãºãå€§å¹ ã«åæžã§ããããã倿°ã®ã¢ããªã±ãŒã·ã§ã³ã§éåžžã«è²Žéã§ããPythonã®å®è£ ãéããŠããã®ååãå®éã«é©çšããæ¹æ³ãå®èšŒããŸããããã¯ãããžãŒãé²åãç¶ããã«ã€ããŠããããã³ç¬Šå·åã®ãããªã¢ã«ãŽãªãºã ã®èåŸã«ããã³ã¢ã³ã³ã»ãããçè§£ããããšã¯ãå°ççãªå¢çãæè¡çãªèæ¯ã«é¢ä¿ãªããæ å ±ãå¹ççã«æ±ããã¹ãŠã®éçºè ãŸãã¯ããŒã¿ãµã€ãšã³ãã£ã¹ãã«ãšã£ãŠäžå¯æ¬ ã§ãããããã®æ§æèŠçŽ ãç¿åŸããããšã«ããããŸããŸãçžäºæ¥ç¶ãé²ãäžçã§ãè€éãªããŒã¿ãã£ã¬ã³ãžã«åãçµãããšãã§ããŸãã