ãã¯ãã«ç©ºéãç·åœ¢å€æãããã³ãããã®äžçäžã®å€æ§ãªåéã§ã®å¿çšãå«ããç·åœ¢ä»£æ°ã®åºæ¬çãªæŠå¿µãæ¢æ±ããŸãã
ç·åœ¢ä»£æ°ïŒãã¯ãã«ç©ºéãšç·åœ¢å€æ - ã°ããŒãã«ãªèŠç¹
ç·åœ¢ä»£æ°ã¯ãç©çåŠãå·¥åŠãã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ãçµæžåŠãçµ±èšåŠãªã©ãå¹ åºãåéã®åé¡ãçè§£ã解決ããããã«å¿ èŠãªããŒã«ãšæè¡ãæäŸããæ°åŠã®åºç€åéã§ãããã®èšäºã§ã¯ãç·åœ¢ä»£æ°ã«ããã2ã€ã®äžå¿çãªæŠå¿µã§ãããã¯ãã«ç©ºéãšç·åœ¢å€æã®å æ¬çãªæŠèŠãæäŸãããããã®äžççãªé¢é£æ§ãšå€æ§ãªå¿çšã匷調ããŸãã
ãã¯ãã«ç©ºéãšã¯ïŒ
æ¬è³ªçã«ããã¯ãã«ç©ºéïŒç·åœ¢ç©ºéãšãåŒã°ããïŒã¯ããã¯ãã«ãšåŒã°ãããªããžã§ã¯ãã®éåã§ãããããããäºãã«å ç®ããããã¹ã«ã©ãŒãšåŒã°ããæ°å€ã§ä¹ç®ïŒãã¹ã±ãŒãªã³ã°ãïŒãããããããšãã§ããŸãããããã®æäœã¯ãæ§é ãäºæž¬å¯èœã«æ¯ãèãããšãä¿èšŒããããã«ãç¹å®ã®å ¬çãæºããå¿ èŠããããŸãã
ãã¯ãã«ç©ºéã®å ¬ç
Vãããã¯ãã«å ç®ïŒu + vïŒãšã¹ã«ã©ãŒä¹ç®ïŒcuïŒã®2ã€ã®æŒç®ãå®çŸ©ãããéåãšããŸããããã§uãšvã¯Vã®ãã¯ãã«ã§ãããcã¯ã¹ã«ã©ãŒã§ããVããã¯ãã«ç©ºéã§ããã®ã¯ã以äžã®å ¬çãæãç«ã€å Žåã§ãã
- å æ³ã«é¢ããéå æ§: Vå ã®ãã¹ãŠã®u, vã«å¯Ÿããu + vã¯Vå ã«ãããŸãã
- ã¹ã«ã©ãŒä¹æ³ã«é¢ããéå æ§: Vå ã®ãã¹ãŠã®uãšãã¹ãŠã®ã¹ã«ã©ãŒcã«å¯Ÿããcuã¯Vå ã«ãããŸãã
- å æ³ã®å¯ææ§: Vå ã®ãã¹ãŠã®u, vã«å¯Ÿããu + v = v + uã§ãã
- å æ³ã®çµåæ§: Vå ã®ãã¹ãŠã®u, v, wã«å¯Ÿãã(u + v) + w = u + (v + w)ã§ãã
- å æ³åäœå ã®ååš: Vå ã®ãã¹ãŠã®uã«å¯Ÿããu + 0 = uãšãªãVå ã®ãã¯ãã«0ãååšããŸãã
- å æ³éå ã®ååš: Vå ã®ãã¹ãŠã®uã«å¯Ÿããu + (-u) = 0ãšãªãVå ã®ãã¯ãã«-uãååšããŸãã
- ãã¯ãã«å æ³ã«é¢ããã¹ã«ã©ãŒä¹æ³ã®åé æ§: ãã¹ãŠã®ã¹ã«ã©ãŒcãšVå ã®ãã¹ãŠã®u, vã«å¯Ÿããc(u + v) = cu + cvã§ãã
- ã¹ã«ã©ãŒå æ³ã«é¢ããã¹ã«ã©ãŒä¹æ³ã®åé æ§: ãã¹ãŠã®ã¹ã«ã©ãŒc, dãšVå ã®ãã¹ãŠã®uã«å¯Ÿãã(c + d)u = cu + duã§ãã
- ã¹ã«ã©ãŒä¹æ³ã®çµåæ§: ãã¹ãŠã®ã¹ã«ã©ãŒc, dãšVå ã®ãã¹ãŠã®uã«å¯Ÿããc(du) = (cd)uã§ãã
- 乿³åäœå ã®ååš: Vå ã®ãã¹ãŠã®uã«å¯Ÿãã1u = uã§ãã
ãã¯ãã«ç©ºéã®äŸ
ãã¯ãã«ç©ºéã®äžè¬çãªäŸãããã€ã瀺ããŸãã
- Rn: 宿°ã®n-ã¿ãã«ã®éåã§ãããæåããšã®å ç®ãšã¹ã«ã©ãŒä¹ç®ãå®çŸ©ãããŸããäŸãã°ãR2ã¯ããç¥ããããã«ã«ãå¹³é¢ã§ãããR3ã¯3次å 空éã衚ããŸããããã¯ç©çåŠã«ãããŠäœçœ®ãé床ã®ã¢ããªã³ã°ã«åºãçšããããŸãã
- Cn: è€çŽ æ°ã®n-ã¿ãã«ã®éåã§ãããæåããšã®å ç®ãšã¹ã«ã©ãŒä¹ç®ãå®çŸ©ãããŸããéåååŠã§åºãçšããããŸãã
- Mm,n(R): 宿°ãšã³ããªãæã€m x nè¡åã®éåã§ãããè¡åå ç®ãšã¹ã«ã©ãŒä¹ç®ãå®çŸ©ãããŸããè¡åã¯ç·åœ¢å€æã衚çŸããããã®åºæ¬ã§ãã
- Pn(R): é«ã n次ã®å®æ°ä¿æ°å€é åŒã®éåã§ãããå€é åŒå ç®ãšã¹ã«ã©ãŒä¹ç®ãå®çŸ©ãããŸããè¿äŒŒçè«ãæ°å€è§£æã§æçšã§ãã
- F(S, R): éåSãã宿°ãžã®ãã¹ãŠã®é¢æ°ã®éåã§ãããç¹ããšã®å ç®ãšã¹ã«ã©ãŒä¹ç®ãå®çŸ©ãããŸããä¿¡å·åŠçãããŒã¿è§£æã§çšããããŸãã
éšå空é
ãã¯ãã«ç©ºéVã®éšå空éãšã¯ãVäžã§å®çŸ©ãããå ç®ãšã¹ã«ã©ãŒä¹ç®ãšåãæŒç®ã®äžã§ãããèªäœããã¯ãã«ç©ºéã§ããVã®éšåéåã§ããVã®éšåéåWãéšå空éã§ããããšãæ€èšŒããã«ã¯ã以äžã瀺ãã ãã§ååã§ãã
- Wã¯ç©ºã§ã¯ãªãïŒå€ãã®å Žåãé¶ãã¯ãã«ãWå ã«ããããšã瀺ãããšã§è¡ãããŸãïŒã
- Wã¯å æ³ã«é¢ããŠéããŠããïŒããuãšvãWå ã«ããã°ãu + vãWå ã«ãããŸãã
- Wã¯ã¹ã«ã©ãŒä¹æ³ã«é¢ããŠéããŠããïŒããuãWå ã«ãããcãã¹ã«ã©ãŒã§ããã°ãcuãWå ã«ãããŸãã
ç·åœ¢ç¬ç«æ§ãåºåºãããã³æ¬¡å
ãã¯ãã«ç©ºéVå ã®ãã¯ãã«éå {v1, v2, ..., vn} ã¯ãæ¹çšåŒ c1v1 + c2v2 + ... + cnvn = 0 ã®å¯äžã®è§£ã c1 = c2 = ... = cn = 0 ã§ããå Žåã«ç·åœ¢ç¬ç«ã§ãããšèšãããŸããããã§ãªãå Žåããã®éåã¯ç·åœ¢åŸå±ã§ãã
ãã¯ãã«ç©ºéVã®åºåºãšã¯ãVã匵ãç·åœ¢ç¬ç«ãªãã¯ãã«éåã§ãïŒã€ãŸããVå ã®ãã¹ãŠã®ãã¯ãã«ã¯åºåºãã¯ãã«ã®ç·åœ¢çµåãšããŠæžãããšãã§ããŸãïŒããã¯ãã«ç©ºéVã®æ¬¡å ã¯ãVã®ä»»æã®åºåºã«å«ãŸãããã¯ãã«ã®æ°ã§ããããã¯ãã¯ãã«ç©ºéã®åºæ¬çãªæ§è³ªã§ãã
äŸ: R3ã«ãããŠãæšæºåºåºã¯ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ã§ããR3ã®æ¬¡å ã¯3ã§ãã
ç·åœ¢å€æ
ç·åœ¢å€æïŒãŸãã¯ç·åœ¢ååïŒã¯ã2ã€ã®ãã¯ãã«ç©ºéVãšWã®éã§ããã¯ãã«å ç®ãšã¹ã«ã©ãŒä¹ç®ã®æŒç®ãä¿åãã颿° T: V â W ã§ããæ£åŒã«ã¯ãTã¯ä»¥äžã®2ã€ã®æ§è³ªãæºããå¿ èŠããããŸãã
- Vå ã®ãã¹ãŠã®u, vã«å¯ŸããT(u + v) = T(u) + T(v)
- Vå ã®ãã¹ãŠã®uãšãã¹ãŠã®ã¹ã«ã©ãŒcã«å¯ŸããT(cu) = cT(u)
ç·åœ¢å€æã®äŸ
- ãŒã倿: Vå ã®ãã¹ãŠã®vã«å¯ŸããT(v) = 0ã
- æç倿: Vå ã®ãã¹ãŠã®vã«å¯ŸããT(v) = vã
- ã¹ã±ãŒãªã³ã°å€æ: Vå ã®ãã¹ãŠã®vã«å¯ŸããT(v) = cvïŒcã¯ã¹ã«ã©ãŒïŒã
- R2ã«ãããå転: åç¹ãäžå¿ãšããè§åºŠÎžã®å転ã¯ç·åœ¢å€æã§ãã
- å°åœ±: R3ã®ãã¯ãã«ãxyå¹³é¢ã«å°åœ±ããããšã¯ç·åœ¢å€æã§ãã
- 埮åïŒåŸ®åå¯èœãªé¢æ°ã®ç©ºéã«ãããŠïŒ: 埮åã¯ç·åœ¢å€æã§ãã
- ç©åïŒç©åå¯èœãªé¢æ°ã®ç©ºéã«ãããŠïŒ: ç©åã¯ç·åœ¢å€æã§ãã
æ žãšå
ç·åœ¢å€æ T: V â W ã®æ žïŒãŸãã¯é¶ç©ºéïŒã¯ãWã®é¶ãã¯ãã«ã«ååãããVå ã®ãã¹ãŠã®ãã¯ãã«ã®éåã§ããæ£åŒã«ã¯ãker(T) = {v in V | T(v) = 0} ã§ããæ žã¯Vã®éšå空éã§ãã
ç·åœ¢å€æ T: V â W ã®åïŒãŸãã¯å€åïŒã¯ãVå ã®ããã€ãã®ãã¯ãã«ã®åã§ããWå ã®ãã¹ãŠã®ãã¯ãã«ã®éåã§ããæ£åŒã«ã¯ãrange(T) = {w in W | w = T(v) for some v in V} ã§ããåã¯Wã®éšå空éã§ãã
éæ°ã»é忬¡æ°å®çã¯ãç·åœ¢å€æ T: V â W ã«ã€ããŠãdim(V) = dim(ker(T)) + dim(range(T)) ã§ãããšè¿°ã¹ãŠããŸãããã®å®çã¯ãç·åœ¢å€æã®æ žãšåã®æ¬¡å éã®åºæ¬çãªé¢ä¿ãæäŸããŸãã
ç·åœ¢å€æã®è¡å衚瀺
ç·åœ¢å€æ T: V â W ãšVããã³Wã®åºåºãäžããããå ŽåãTãè¡åãšããŠè¡šçŸã§ããŸããããã«ãããè¡åä¹ç®ã䜿çšããŠç·åœ¢å€æãå®è¡ããããšãã§ããèšç®å¹çãåäžããŸããããã¯å®çšçãªã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠäžå¯æ¬ ã§ãã
äŸ: ç·åœ¢å€æ T: R2 â R2 ã T(x, y) = (2x + y, x - 3y) ãšå®çŸ©ããŸããæšæºåºåºã«é¢ããTã®è¡å衚瀺ã¯ä»¥äžã®éãã§ãã
åºæå€ãšåºæãã¯ãã«
ç·åœ¢å€æ T: V â V ã®åºæãã¯ãã«ã¯ãT(v) = λv ãšãªãVå ã®éé¶ãã¯ãã«vã§ãããããã§Î»ã¯ã¹ã«ã©ãŒã§ããã¹ã«ã©ãŒÎ»ã¯ãåºæãã¯ãã«vã«é¢é£ä»ããããåºæå€ãšåŒã°ããŸããåºæå€ãšåºæãã¯ãã«ã¯ãç·åœ¢å€æã®åºæ¬çãªç¹æ§ãæããã«ããŸãã
åºæå€ãšåºæãã¯ãã«ã®æ±ãæ¹: è¡åAã®åºæå€ãæ±ããã«ã¯ãç¹æ§æ¹çšåŒ det(A - λI) = 0 ãè§£ããŸããããã§Iã¯åäœè¡åã§ããåºæå€ãèŠã€ãããšã察å¿ããåºæãã¯ãã«ã¯ç·åœ¢æ¹çšåŒç³» (A - λI)v = 0 ãè§£ãããšã§æ±ºå®ã§ããŸãã
åºæå€ãšåºæãã¯ãã«ã®å¿çš
- ç©çåŠ: åºæå€ãšåºæãã¯ãã«ã¯ãæ¯åãæ³¢åãéåååŠçã·ã¹ãã ã®è§£æã«çšããããŸããäŸãã°ãéåååŠã«ãããŠãããã«ããã¢ã³æŒç®åã®åºæå€ã¯ã·ã¹ãã ã®ãšãã«ã®ãŒæºäœã衚ããåºæãã¯ãã«ã¯å¯Ÿå¿ããéåç¶æ ã衚ããŸãã
- å·¥åŠ: æ§é å·¥åŠã§ã¯ãåºæå€ãšåºæãã¯ãã«ã¯æ§é ç©ã®åºææ¯åæ°ãšæ¯åã¢ãŒããæ±ºå®ããããã«çšããããå®å®ããå®å šãªå»ºç©ãæ©ãèšèšããäžã§äžå¯æ¬ ã§ãã
- ã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹: ããŒã¿è§£æã«ãããŠãäž»æååæïŒPCAïŒã¯åºæå€ãšåºæãã¯ãã«ãçšããŠãæãéèŠãªæ å ±ãä¿æããªããããŒã¿ã®æ¬¡å ãåæžããŸãããããã¯ãŒã¯è§£æã§ã¯ãGoogleããŠã§ãããŒãžã®ã©ã³ã¯ä»ãã«äœ¿çšããã¢ã«ãŽãªãºã ã§ããPageRankã¯ããŠã§ãããŒãžéã®ãªã³ã¯ã衚ãè¡åã®åºæå€ã«äŸåããŠããŸãã
- çµæžåŠ: çµæžåŠã§ã¯ãåºæå€ãšåºæãã¯ãã«ã¯çµæžã¢ãã«ã®å®å®æ§ãåæããã·ã¹ãã ã®é·æçãªæåãçè§£ããããã«çšããããŸãã
ãã¯ãã«ç©ºéãšç·åœ¢å€æã®ã°ããŒãã«ãªå¿çš
ãã¯ãã«ç©ºéãšç·åœ¢å€æã®æŠå¿µã¯ãäžçäžã®å€ãã®æè¡ãç§åŠç鲿©ã®æ ¹åºãæ¯ããåºæ¬çãªããŒã«ã§ãã以äžã«ããããã®åºç¯ãªåœ±é¿ã瀺ãããã€ãã®äŸãæããŸãã
- ç»ååŠçãšã³ã³ãã¥ãŒã¿ããžã§ã³: ç»åãè¡åãšããŠè¡šçŸããããšã§ãç·åœ¢å€æãçšããæäœãå¯èœã«ãªããŸããå転ãã¹ã±ãŒãªã³ã°ããã£ã«ã¿ãªã³ã°ãªã©ã®æäœã¯è¡åæŒç®ãéããŠå®è£ ãããŸããããã¯å»çç»ååŠçãè¡æç»åè§£æãèªåŸèµ°è¡è»ã®ããã²ãŒã·ã§ã³ã«äžå¯æ¬ ã§ãã
- ããŒã¿å§çž®: ç¹ç°å€åè§£ïŒSVDïŒã®ãããªæè¡ã¯ãæ å ±æå€±ãæå°éã«æããªããããŒã¿ã»ããã®ãµã€ãºãåæžããããã«ç·åœ¢ä»£æ°ã«å€§ããäŸåããŠããŸããããã¯ãç»åãåç»ããã®ä»ã®ããŒã¿éã®å€ããã¡ã€ã«ãäžçèŠæš¡ã§å¹ççã«ä¿åã»éä¿¡ããããã«äžå¯æ¬ ã§ãã
- æå·å: å®å šãªãªã³ã©ã€ã³ååŒãéä¿¡ã§äœ¿çšããããã®ãªã©ãç¹å®ã®æå·åã¢ã«ãŽãªãºã ã¯ãè¡åãšãã¯ãã«ç©ºéã®ç¹æ§ã掻çšããŠæ©å¯æ å ±ããšã³ã³ãŒãããã³ãã³ãŒãããŸãã
- æé©å: ç·åœ¢å¶çŽãæã€åé¡ã®æé©è§£ãèŠã€ããææ³ã§ããç·åœ¢èšç»æ³ã¯ããã¯ãã«ç©ºéãšç·åœ¢å€æãå©çšããŸããããã¯ãäžçäžã®ããŸããŸãªç£æ¥ã«ãããããžã¹ãã£ã¯ã¹ããªãœãŒã¹å²ãåœãŠãã¹ã±ãžã¥ãŒãªã³ã°ã«åºãé©çšãããŠããŸãã
- æ©æ¢°åŠç¿: ç·åœ¢ååž°ããµããŒããã¯ã¿ãŒãã·ã³ïŒSVMïŒããã¥ãŒã©ã«ãããã¯ãŒã¯ãªã©ãå€ãã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã¯ç·åœ¢ä»£æ°ã®åºç€ã®äžã«æ§ç¯ãããŠããŸãããããã®ã¢ã«ãŽãªãºã ã¯ãäžæ£æ€åºãããŒãœãã©ã€ãºãããã¬ã³ã¡ã³ããŒã·ã§ã³ãèªç¶èšèªåŠçãªã©ã倿§ãªã¢ããªã±ãŒã·ã§ã³ã§äœ¿çšãããŠãããäžçäžã®å人ãçµç¹ã«åœ±é¿ãäžããŠããŸãã
çµè«
ãã¯ãã«ç©ºéãšç·åœ¢å€æã¯çŸä»£æ°åŠã®åºç€ã§ããã倿°ã®åéã§åé¡ã解決ããäžã§æ¥µããŠéèŠãªåœ¹å²ãæãããŸãããããã®åºæ¬çãªæŠå¿µãçè§£ããããšã§ãç§åŠãå·¥åŠããã®ä»ã«ãããè€éãªã·ã¹ãã ãåæã»ã¢ãã«åããããã®åŒ·åãªãã¬ãŒã ã¯ãŒã¯ãåŸãããŸãããããã®äžççãªåœ±é¿ã¯åŠå®ã§ãããäžçã®ããããå Žæã§æè¡ãæ¹æ³è«ã圢æããŠããŸãããããã®æŠå¿µãç¿åŸããããšã§ãå人ã¯åšå²ã®äžçãããæ·±ãçè§£ããå°æ¥ã®é©æ°ã«è²¢ç®ããããšãã§ããŸãã
ãããªãæ¢æ±
- æç§æž: Gilbert Strang è "Linear Algebra and Its Applications"ãSheldon Axler è "Linear Algebra Done Right"
- ãªã³ã©ã€ã³ã³ãŒã¹: MIT OpenCourseWare (Gilbert Strangã®ç·åœ¢ä»£æ°ã³ãŒã¹)ãKhan Academy (ç·åœ¢ä»£æ°)
- ãœãããŠã§ã¢: MATLAB, Python (NumPy, SciPyã©ã€ãã©ãª)