ç·åœ¢ä»£æ°ã«ãããè¡ååè§£ã®æè¡ããã®å¿çšããããŠæ§ã ãªåéã§ãªãäžå¯æ¬ ãªã®ããæ¢ããŸãã
ç·åœ¢ä»£æ°ïŒè¡ååè§£ã®æ·±æã
è¡ååè§£ããŸãã¯è¡åå ååè§£ã¯ãç·åœ¢ä»£æ°ã«ãããåºæ¬çãªæŠå¿µã§ãããåºç¯ãªå¿çšãæã¡ãŸããããã¯ãè¡åããããããç¹å®ã®ç¹æ§ãæã€ããåçŽãªè¡åã®ç©ãšããŠè¡šçŸãããã®ã§ãããããã®åè§£ã¯ãè€éãªèšç®ãç°¡çŽ åããåºç€ãšãªãæ§é ãæããã«ãã倿§ãªåéã«ãããæ§ã ãªåé¡ã®å¹ççãªè§£æ±ºãä¿é²ããŸãããã®å æ¬çãªã¬ã€ãã§ã¯ãããã€ãã®éèŠãªè¡ååè§£æè¡ããã®ç¹æ§ãããã³å®è·µçãªå¿çšãæ¢ããŸãã
è¡ååè§£ãéèŠãªçç±
è¡ååè§£ã¯ãå€ãã®åéã§éèŠãªåœ¹å²ãæãããŸãã以äžã¯ãã®äžéšã§ãïŒ
- ç·åœ¢ã·ã¹ãã ã®è§£æ³ïŒLUåè§£ãã³ã¬ã¹ããŒåè§£ãªã©ã®åè§£ã¯ãç·åœ¢æ¹çšåŒç³»ã®è§£æ³ãããå¹ççãã€å®å®ãããŸãã
- ããŒã¿åæïŒSVDãšPCAïŒäž»æååæãSVDã«äŸåïŒã¯ãããŒã¿ãµã€ãšã³ã¹ã«ãããæ¬¡å åæžãç¹åŸŽæœåºããã¿ãŒã³èªèã®åºæ¬ã§ãã
- æ©æ¢°åŠç¿ïŒè¡ååè§£ã¯ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ïŒSVDïŒãç»åå§çž®ïŒSVDïŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æé©åã«äœ¿çšãããŸãã
- æ°å€å®å®æ§ïŒQRåè§£ã®ãããªç¹å®ã®åè§£ã¯ãã¢ã«ãŽãªãºã ã®æ°å€å®å®æ§ãåäžãããèšç®ã«ããã誀差ã®èç©ãé²ããŸãã
- åºæå€åé¡ïŒåºæå€åè§£ã¯ãç¹ã«å¶åŸ¡çè«ãç©çåŠã®ãããªåéã«ãããŠãç·åœ¢ã·ã¹ãã ã®å®å®æ§ãæåãåæããããã«äžå¯æ¬ ã§ãã
è¡ååè§£ã®çš®é¡
è¡ååè§£ã«ã¯ããã€ãã®çš®é¡ããããããããç¹å®ã®çš®é¡ã®è¡åãå¿çšã«é©ããŠããŸããããã§ã¯ãæãéèŠãªãã®ã®äžéšãæ¢ããŸãïŒ
1. åºæå€åè§£ (EVD)
åºæå€åè§£ïŒEVDïŒã¯ã察è§åå¯èœãªæ£æ¹è¡åã«é©çšã§ããŸããæ£æ¹è¡åAã¯ã次ã®ããã«è¡šçŸã§ããå Žåã«å¯Ÿè§åå¯èœã§ãïŒ
A = PDP-1
ããã§ïŒ
- Dã¯ãAã®åºæå€ãå«ã察è§è¡åã§ãã
- Pã¯ããã®åãAã®å¯Ÿå¿ããåºæãã¯ãã«ã§ããè¡åã§ãã
- P-1ã¯ãPã®éè¡åã§ãã
äž»ãªç¹æ§ïŒ
- EVDã¯ã察è§åå¯èœãªè¡åã«å¯ŸããŠã®ã¿ååšããŸããååãªïŒãããå¿ èŠã§ã¯ãªãïŒæ¡ä»¶ã¯ãè¡åãnåã®ç·åœ¢ç¬ç«ãªåºæãã¯ãã«ãæã€ããšã§ãã
- åºæå€ã¯å®æ°ãŸãã¯è€çŽ æ°ã«ãªãåŸãŸãã
- åºæãã¯ãã«ã¯äžæã§ã¯ãããŸããããããã¯ä»»æã®éãŒã宿°ã§ã¹ã±ãŒã«ã§ããŸãã
å¿çšïŒ
- äž»æååæ (PCA)ïŒPCAã¯EVDã䜿çšããŠããŒã¿ã®äž»æåãèŠã€ããæãéèŠãªæ å ±ãä¿æããªããæ¬¡å ãåæžããŸããè³Œå ¥å±¥æŽã«åºã¥ããŠé¡§å®¢ã®è¡åãåæããããšãæ³åããŠã¿ãŠãã ãããPCAã¯ãããŒã¿ã®åæ£ã®å€§éšåã説æããæãéèŠãªè³Œå ¥ãã¿ãŒã³ïŒäž»æåïŒãç¹å®ããäŒæ¥ãã¿ãŒã²ããããŒã±ãã£ã³ã°ã®ããã«ãããã®äž»èŠãªåŽé¢ã«çŠç¹ãåœãŠãããšãå¯èœã«ããŸãã
- ç·åœ¢ã·ã¹ãã ã®å®å®æ§åæïŒå¶åŸ¡çè«ã§ã¯ãåºæå€ãç·åœ¢ã·ã¹ãã ã®å®å®æ§ã決å®ããŸããã·ã¹ãã ã¯ããã¹ãŠã®åºæå€ãè² ã®å®éšãæã€å Žåã«å®å®ã§ãã
- æ¯åè§£æïŒæ§é å·¥åŠã§ã¯ãåºæå€ã¯æ§é ç©ã®èªç¶æ¯åæ°ã衚ããŸãã
äŸïŒäººå£ã«ãããçŸæ£ã®èå»¶ãåæããããšãèããŠã¿ãŸããããEVDã¯ãç°ãªãææç¶æ ïŒæåæ§ãææãå埩ïŒéã®é·ç§»ç¢ºçã衚ãè¡åã«é©çšã§ããŸããåºæå€ã¯çŸæ£èå»¶ã®é·æçãªåæ ãæããã«ããå ¬è¡è¡çåœå±ãã¢ãŠããã¬ã€ã¯ãäºæž¬ãã广çãªä»å ¥æŠç¥ãèšèšããã®ã«åœ¹ç«ã¡ãŸãã
2. ç¹ç°å€åè§£ (SVD)
ç¹ç°å€åè§£ïŒSVDïŒã¯ã匷åã§æ±çšæ§ã®é«ãæè¡ã§ãããæ£æ¹è¡åã§ãããã©ããã«ããããããä»»æã®m x nè¡åAã«é©çšã§ããŸããAã®SVDã¯æ¬¡ã®ããã«äžããããŸãïŒ
A = USVT
ããã§ïŒ
- Uã¯ãAã®å·Šç¹ç°ãã¯ãã«ãåã«æã€m x mçŽäº€è¡åã§ãã
- Sã¯ã察è§ç·äžã«éè² ã®å®æ°ãæã€m x n察è§è¡åã§ãAã®ç¹ç°å€ãšåŒã°ããŸããç¹ç°å€ã¯éåžžãéé ã«äžŠã¹ãããŸãã
- Vã¯ãAã®å³ç¹ç°ãã¯ãã«ãåã«æã€n x nçŽäº€è¡åã§ãã
- VTã¯ãVã®è»¢çœ®è¡åã§ãã
äž»ãªç¹æ§ïŒ
- SVDã¯ä»»æã®è¡åã«å¯ŸããŠååšããEVDãããäžè¬çã§ãã
- ç¹ç°å€ã¯åžžã«éè² ã®å®æ°ã§ãã
- SVDã¯ãè¡åã®ã©ã³ã¯ãé¶ç©ºéãããã³ç¯å²ã«é¢ããæ å ±ãæäŸããŸãã
å¿çšïŒ
- 次å åæžïŒæå€§ã®ç¹ç°å€ãšå¯Ÿå¿ããç¹ç°ãã¯ãã«ã®ã¿ãä¿æããããšã§ãè¡åã®äœã©ã³ã¯è¿äŒŒãåŸãããšãã§ããããŒã¿ã®æ¬¡å ã广çã«åæžããŸããããã¯ç»åå§çž®ãããŒã¿ãã€ãã³ã°ã§åºã䜿çšãããŠããŸããNetflixãSVDã䜿çšããŠæ ç»ãæšèŠããããšãæ³åããŠã¿ãŠãã ããã圌ãã¯ãŠãŒã¶ãŒãšæ ç»ã®å·šå€§ãªè¡åãæã£ãŠããŸããSVDã¯ãæãéèŠãªæ å ±ã®ã¿ãä¿æããããšã§ãã¿ãŒã³ãèŠã€ãããããã®ãã¿ãŒã³ã«åºã¥ããŠããªãã«æ ç»ãæšèŠããããšãã§ããŸãã
- ã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ïŒSVDã¯ãéå»ã®è¡åã«åºã¥ããŠãŠãŒã¶ãŒã®å¥œã¿ãäºæž¬ããããšã§ãã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ãæ§ç¯ããããã«äœ¿çšãããŸãã
- ç»åå§çž®ïŒSVDã¯ãããå°ãªãæ°ã®ç¹ç°å€ãšãã¯ãã«ã§ç»åã衚çŸããããšã§ãç»åãå§çž®ããããšãã§ããŸãã
- æœåšæå³è§£æ (LSA)ïŒLSAã¯SVDã䜿çšããŠææžãšçšèªéã®é¢ä¿ãåæããé ããæå³æ§é ãç¹å®ããŸãã
äŸïŒã²ããã¯ã¹ã§ã¯ãSVDã¯éºäŒåçºçŸããŒã¿ã«é©çšãããéºäŒåå ±çºçŸã®ãã¿ãŒã³ãç¹å®ããŸããéºäŒåçºçŸè¡åãåè§£ããããšã§ãç ç©¶è ã¯å調çã«å¶åŸ¡ãããç¹å®ã®çç©åŠçããã»ã¹ã«é¢äžããéºäŒåã®ã¢ãžã¥ãŒã«ãçºèŠããããšãã§ããŸããããã¯çŸæ£ã¡ã«ããºã ã®çè§£ãšæœåšçãªè¬å€æšçã®ç¹å®ã«åœ¹ç«ã¡ãŸãã
3. LUåè§£
LUåè§£ã¯ãæ£æ¹è¡åAãäžäžè§è¡åLãšäžäžè§è¡åUã®ç©ã«åè§£ããè¡åå ååè§£æ³ã§ãã
A = LU
ããã§ïŒ
- Lã¯ãå¯Ÿè§æåã1ã§ããäžäžè§è¡åã§ãã
- Uã¯ãäžäžè§è¡åã§ãã
äž»ãªç¹æ§ïŒ
- LUåè§£ã¯ãã»ãšãã©ã®æ£æ¹è¡åã«å¯ŸããŠååšããŸãã
- æ°å€å®å®æ§ã®ããã«ããããæäœãå¿ èŠãªå ŽåãPA = LUãšãªããŸããããã§Pã¯çœ®æè¡åã§ãã
- LUåè§£ã¯ã远å ã®å¶çŽããªãå Žåãäžæã§ã¯ãããŸããã
å¿çšïŒ
- ç·åœ¢ã·ã¹ãã ã®è§£æ³ïŒLUåè§£ã¯ãç·åœ¢æ¹çšåŒç³»ãå¹ççã«è§£ãããã«äœ¿çšãããŸããåè§£ãèšç®ããããšãAx = bã®è§£æ³ã¯ãLy = bãšUx = yãšãã2ã€ã®äžè§ã·ã¹ãã ãè§£ãããšã«åž°çããããã¯èšç®ã³ã¹ããäœãã§ãã
- è¡ååŒã®èšç®ïŒAã®è¡ååŒã¯ãUã®å¯Ÿè§èŠçŽ ã®ç©ãšããŠèšç®ã§ããŸãã
- éè¡åã®èšç®ïŒLUåè§£ã¯ãè¡åã®éè¡åãèšç®ããããã«äœ¿çšã§ããŸãã
äŸïŒèšç®æµäœååŠïŒCFDïŒã§ã¯ãLUåè§£ã¯ãæµäœã®æµããèšè¿°ããååŸ®åæ¹çšåŒã颿£åããéã«çããå€§èŠæš¡ãªç·åœ¢æ¹çšåŒç³»ãè§£ãããã«äœ¿çšãããŸããLUåè§£ã®å¹çæ§ã«ãããè€éãªæµäœçŸè±¡ã®ã·ãã¥ã¬ãŒã·ã§ã³ã劥åœãªæéæ ã§è¡ãããšãã§ããŸãã
4. QRåè§£
QRåè§£ã¯ãè¡åAãçŽäº€è¡åQãšäžäžè§è¡åRã®ç©ã«åè§£ããŸãã
A = QR
ããã§ïŒ
- Qã¯çŽäº€è¡åã§ãïŒQTQ = IïŒã
- Rã¯äžäžè§è¡åã§ãã
äž»ãªç¹æ§ïŒ
- QRåè§£ã¯ä»»æã®è¡åã«å¯ŸããŠååšããŸãã
- Qã®åã¯æ£èŠçŽäº€ã§ãã
- QRåè§£ã¯æ°å€çã«å®å®ããŠãããæªæ¡ä»¶ã®ã·ã¹ãã ãè§£ãã®ã«é©ããŠããŸãã
å¿çšïŒ
- ç·åœ¢æå°äºä¹åé¡ã®è§£æ³ïŒQRåè§£ã¯ãéæ±ºå®ãªç·åœ¢æ¹çšåŒç³»ã®æé©é©åè§£ãèŠã€ããããã«äœ¿çšãããŸãã
- åºæå€èšç®ïŒQRã¢ã«ãŽãªãºã ã¯ãè¡åã®åºæå€ãå埩çã«èšç®ããããã«äœ¿çšãããŸãã
- æ°å€å®å®æ§ïŒQRåè§£ã¯ãç·åœ¢ã·ã¹ãã ãè§£ãéã«ãç¹ã«è¡åãæªæ¡ä»¶ã§ããå Žåã«ãLUåè§£ãããå®å®ããŠããŸãã
äŸïŒGPSã·ã¹ãã ã¯ãè€æ°ã®è¡æããã®ä¿¡å·ã«åºã¥ããŠåä¿¡æ©ã®äœçœ®ã決å®ããæå°äºä¹åé¡ãè§£ãããã«QRåè§£ã䜿çšããŸããè¡æãŸã§ã®è·é¢ã¯é決å®ãªæ¹çšåŒç³»ã圢æããQRåè§£ã¯å®å®ã§æ£ç¢ºãªè§£ãæäŸããŸãã
5. ã³ã¬ã¹ããŒåè§£
ã³ã¬ã¹ããŒåè§£ã¯ã察称æ£å®å€è¡åã«ã®ã¿é©çšãããLUåè§£ã®ç¹æ®ãªã±ãŒã¹ã§ãã察称æ£å®å€è¡åAã¯æ¬¡ã®ããã«åè§£ã§ããŸãïŒ
A = LLT
ããã§ïŒ
- Lã¯ã察è§èŠçŽ ãæ£ã®äžäžè§è¡åã§ãã
- LTã¯ãLã®è»¢çœ®è¡åã§ãã
äž»ãªç¹æ§ïŒ
- ã³ã¬ã¹ããŒåè§£ã¯ã察称æ£å®å€è¡åã«å¯ŸããŠã®ã¿ååšããŸãã
- ãã®åè§£ã¯äžæã§ãã
- ã³ã¬ã¹ããŒåè§£ã¯èšç®å¹çãé«ãã§ãã
å¿çšïŒ
- ç·åœ¢ã·ã¹ãã ã®è§£æ³ïŒã³ã¬ã¹ããŒåè§£ã¯ã察称æ£å®å€è¡åãæã€ç·åœ¢ã·ã¹ãã ãå¹ççã«è§£ãããã«äœ¿çšãããŸãã
- æé©åïŒã³ã¬ã¹ããŒåè§£ã¯ãäºæ¬¡èšç»åé¡ãè§£ãããã®æé©åã¢ã«ãŽãªãºã ã§äœ¿çšãããŸãã
- çµ±èšçã¢ããªã³ã°ïŒçµ±èšåŠã§ã¯ãã³ã¬ã¹ããŒåè§£ã¯çžé¢ã®ãã確ç倿°ãã·ãã¥ã¬ãŒãããããã«äœ¿çšãããŸãã
äŸïŒéèã¢ããªã³ã°ã§ã¯ãã³ã¬ã¹ããŒåè§£ã¯çžé¢ã®ããè³ç£åççãã·ãã¥ã¬ãŒãããããã«äœ¿çšãããŸããè³ç£åççã®å ±åæ£è¡åãåè§£ããããšã§ãç°ãªãè³ç£éã®äŸåé¢ä¿ãæ£ç¢ºã«åæ ããã©ã³ãã ãµã³ãã«ãçæã§ããŸãã
é©åãªåè§£ã®éžæ
é©åãªè¡ååè§£ã®éžæã¯ãè¡åã®ç¹æ§ãšç¹å®ã®å¿çšã«äŸåããŸãã以äžã«ã¬ã€ãã瀺ããŸãïŒ
- EVDïŒåºæå€ãšåºæãã¯ãã«ãå¿ èŠãªå Žåã察è§åå¯èœãªæ£æ¹è¡åã«äœ¿çšããŸãã
- SVDïŒæ¬¡å åæžãã©ã³ã¯ãç¹ç°å€ã®çè§£ãéèŠãªå Žåãä»»æã®è¡åïŒæ£æ¹ãŸãã¯é·æ¹åœ¢ïŒã«äœ¿çšããŸãã
- LUïŒè¡åãæ£æ¹ãã€éç¹ç°ã§ãæ°å€å®å®æ§ã倧ããªæžå¿µäºé ã§ãªãå Žåãç·åœ¢ã·ã¹ãã ã®è§£æ³ã«äœ¿çšããŸãã
- QRïŒç·åœ¢æå°äºä¹åé¡ãè§£ãå ŽåããŸãã¯æ°å€å®å®æ§ãäžå¯æ¬ ãªå Žåã«äœ¿çšããŸãã
- ã³ã¬ã¹ããŒïŒç·åœ¢ã·ã¹ãã ãè§£ãå ŽåããŸãã¯æé©åãå®è¡ããå Žåã察称æ£å®å€è¡åã«äœ¿çšããŸãã
å®çšçãªèæ ®äºé ãšãœãããŠã§ã¢ã©ã€ãã©ãª
å€ãã®ããã°ã©ãã³ã°èšèªãšã©ã€ãã©ãªã¯ãè¡ååè§£ã¢ã«ãŽãªãºã ã®å¹ççãªå®è£ ãæäŸããŠããŸãã以äžã«ããã€ãã®äººæ°ã®ããéžæè¢ã瀺ããŸãïŒ
- PythonïŒNumPyããã³SciPyã©ã€ãã©ãªã¯ãEVDãSVDãLUãQRãããã³ã³ã¬ã¹ããŒåè§£ã®é¢æ°ãæäŸããŠããŸãã
- MATLABïŒMATLABã«ã¯ããã¹ãŠã®äžè¬çãªè¡ååè§£ã®ããã®çµã¿èŸŒã¿é¢æ°ããããŸãã
- RïŒRã¯ãåºæ¬ããã±ãŒãžããã³`Matrix`ã®ãããªå°éããã±ãŒãžã§è¡ååè§£ã®é¢æ°ãæäŸããŠããŸãã
- JuliaïŒJuliaã®`LinearAlgebra`ã¢ãžã¥ãŒã«ã¯ãå æ¬çãªè¡ååè§£æ©èœãæäŸããŠããŸãã
å€§èŠæš¡ãªè¡åãæ±ãéã«ã¯ãã¡ã¢ãªãç¯çŽããèšç®å¹çãåäžãããããã«ã¹ããŒã¹è¡å圢åŒã®äœ¿çšãæ€èšããŠãã ãããå€ãã®ã©ã€ãã©ãªã¯ãã¹ããŒã¹è¡ååè§£ã®ããã®ç¹æ®ãªé¢æ°ãæäŸããŠããŸãã
çµè«
è¡ååè§£ã¯ãè¡åã®æ§é ã«é¢ããæŽå¯ãæäŸããæ§ã ãªåé¡ã®å¹ççãªè§£æ±ºãå¯èœã«ããç·åœ¢ä»£æ°ã«ããã匷åãªããŒã«ã§ããç°ãªãçš®é¡ã®åè§£ãšãã®ç¹æ§ãçè§£ããããšã§ãããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ãå·¥åŠããã®ä»å€ãã®åéã«ãããçŸå®äžçã®åé¡ã广çã«è§£æ±ºããããã«ããããé©çšã§ããŸããã²ãã ããŒã¿ã®åæããã¬ã³ã¡ã³ããŒã·ã§ã³ã·ã¹ãã ã®æ§ç¯ãæµäœååŠã®ã·ãã¥ã¬ãŒã·ã§ã³ã«è³ããŸã§ãè¡ååè§£ã¯ç§åŠççºèŠãšæè¡é©æ°ã®é²å±ã«äžå¯æ¬ ãªåœ¹å²ãæãããŸãã
ããã«åŠã¶
è¡ååè§£ã®äžçãããã«æ·±ãæãäžããã«ã¯ã以äžã®ãªãœãŒã¹ãæ€èšããŠãã ããïŒ
- æç§æžïŒ
- Gilbert Strangè "Linear Algebra and Its Applications"
- Gene H. Golubããã³Charles F. Van Loanè "Matrix Computations"
- ãªã³ã©ã€ã³ã³ãŒã¹ïŒ
- MIT OpenCourseWare: ç·åœ¢ä»£æ°
- Coursera: æ©æ¢°åŠç¿ã®ããã®æ°åŠïŒç·åœ¢ä»£æ°
- ç ç©¶è«æïŒé«åºŠãªãããã¯ãå¿çšã«ã€ããŠã¯ãæ°å€ç·åœ¢ä»£æ°ã«é¢ããæè¿ã®åºçç©ã調ã¹ãŠãã ããã