ç»åèªèãèªç¶èšèªåŠçãªã©ãå€é©ããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã®è€éããæ¢æ±ããŸãããã®ã¢ãŒããã¯ãã£ãå¿çšãããã³å°æ¥ã®ãã¬ã³ããçè§£ããŸãã
ãã£ãŒãã©ãŒãã³ã°ïŒç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã®å æ¬çãªã¬ã€ã
æ©æ¢°åŠç¿ã®ãµããã£ãŒã«ãã§ãããã£ãŒãã©ãŒãã³ã°ã¯ãç»åèªèããèªç¶èšèªåŠçãŸã§ãæ°å€ãã®é åã«é©åœããããããŸããããããã®é²æ©ã®å€ãã®äžæ žããªãã®ã¯ãç»åã®ãããªã°ãªããæ§é ãæã€ããŒã¿ã®åŠçã«ç¹ã«é©ããã匷åãªã¿ã€ãã®ãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã§ããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã§ãã
ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒãšã¯ïŒ
CNNã¯ãå ¥åããŒã¿ããç¹åŸŽã®ç©ºéçéå±€ãèªåçãã€é©å¿çã«åŠç¿ããããã«èšèšããããç¹æ®ãªã¿ã€ãã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ããå ¥åããŒã¿ãåäžã®ãã¯ãã«ãšããŠæ±ãåŸæ¥ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ãšã¯ç°ãªããCNNã¯ããŒã¿å ã®åºæã®ç©ºéçé¢ä¿ã掻çšããŸããããã«ãããç»åããããªãããã«ã¯é³å£°åŠçã䌎ãã¿ã¹ã¯ã«éåžžã«å¹æçã§ãã
ãç³ã¿èŸŒã¿ããšããåŽé¢ã¯ãäžé£ã®åŠç¿å¯èœãªãã£ã«ã¿ïŒã«ãŒãã«ãšãåŒã°ããŸãïŒã䜿çšããŠå ¥åããŒã¿ã«é©çšãããç³ã¿èŸŒã¿ã®æ°åŠçæŒç®ãæããŸãããããã®ãã£ã«ã¿ã¯å ¥åãã¹ã©ã€ãããèŠçŽ ããšã®ä¹ç®ãšå ç®ãå®è¡ããŠãç¹å®ã®æ©èœãæœåºããŸãããããã¯ãŒã¯ã¯ãç®ã®åã®ã¿ã¹ã¯ã«é¢é£ãããã¿ãŒã³ãèå¥ããã®ã«æã广çãªãã£ã«ã¿ãåŠç¿ããŸãã
CNNã¢ãŒããã¯ãã£ã®äž»èŠã³ã³ããŒãã³ã
å žåçãªCNNã¢ãŒããã¯ãã£ã¯ãç¹åŸŽãæœåºããäºæž¬ãè¡ãããã«é£æºããããã€ãã®äž»èŠãªå±€ã§æ§æãããŠããŸãããããã®ã³ã³ããŒãã³ãã詳ããèŠãŠãããŸãããã
1. ç³ã¿èŸŒã¿å±€
ãããã¯CNNã®åºæ¬çãªæ§æèŠçŽ ã§ããåè¿°ã®ããã«ãç³ã¿èŸŒã¿å±€ã¯äžé£ã®ãã£ã«ã¿ãå ¥åããŒã¿ã«é©çšããŸããåãã£ã«ã¿ã¯ããšããžãã³ãŒããŒããã¯ã¹ãã£ãªã©ã®ç¹å®ã®æ©èœãæ€åºããŸããç³ã¿èŸŒã¿å±€ã®åºåã¯ç¹åŸŽãããã§ããããã£ã«ã¿ã®ç¹åŸŽãæ€åºãããå ¥åå ã®å Žæã衚ããŸãã
äŸïŒæ°Žå¹³ãšããžãæ€åºããããã«èšèšããããã£ã«ã¿ãæ³åããŠãã ããããã®ãã£ã«ã¿ãç»åã«é©çšãããšãæ°Žå¹³ãšããžãååšããé åã§ã¯é«ãåºåå€ãçæããããã以å€ã®å Žæã§ã¯äœãåºåå€ãçæãããŸãã
2. 掻æ§å颿°
åç³ã¿èŸŒã¿å±€ã®åŸããããã¯ãŒã¯ã«éç·åœ¢æ§ãå°å ¥ããããã«æŽ»æ§å颿°ãé©çšãããŸããããã¯éåžžã«éèŠã§ãããªããªããçŸå®äžçã®ããŒã¿ã¯å€ãã®å Žåéç·åœ¢ã§ãããæŽ»æ§å颿°ããªããšãCNNã¯ç·åœ¢é¢ä¿ããåŠç¿ã§ããªããªãããã§ããäžè¬çãªæŽ»æ§å颿°ã«ã¯ãReLUïŒRectified Linear UnitïŒãã·ã°ã¢ã€ããtanhãªã©ããããŸãã
äŸïŒ ReLUã¯ããã®åçŽããšå¹çæ§ãã人æ°ã®éžæè¢ã§ããæ£ã®å Žåã¯å ¥åå€ãçŽæ¥åºåãããã以å€ã®å Žåã¯0ïŒf(x) = max(0, x)ïŒãåºåããŸãã
3. ããŒãªã³ã°å±€
ããŒãªã³ã°å±€ã¯ãç¹åŸŽãããã®ç©ºéçæ¬¡å ãåæžãããããã¯ãŒã¯å ã®ãã©ã¡ãŒã¿æ°ãæžãããéå°é©åãé²ãã®ã«åœ¹ç«ã¡ãŸãããŸããå°ããªã·ãããå転ãªã©ãå ¥åã®ããªãšãŒã·ã§ã³ã«å¯Ÿãããããã¯ãŒã¯ã®å ç¢æ§ãé«ããŸããäžè¬çãªããŒãªã³ã°æäœã«ã¯ãæå€§ããŒãªã³ã°ãšå¹³åããŒãªã³ã°ããããŸãã
äŸïŒæå€§ããŒãªã³ã°ã¯ãåããŒãªã³ã°ãŠã£ã³ããŠå ã§æå€§å€ãéžæããæãé¡èãªç¹åŸŽãä¿æããªãããéèŠåºŠã®äœãæ å ±ãç Žæ£ããŸãã
4. å šçµåå±€
ããã€ãã®ç³ã¿èŸŒã¿å±€ãšããŒãªã³ã°å±€ã®åŸãCNNã§ã®é«åºŠãªæšè«ã¯ãå šçµåå±€ãä»ããŠè¡ãããŸãããããã®å±€ã¯ãåŸæ¥ã®å€å±€ããŒã»ãããã³ïŒMLPïŒã®å±€ãšåæ§ã§ãããããã¯ãåã®å±€ããã®å¹³åŠåãããåºåãåãåããããã䜿çšããŠæçµçãªåºåãäºæž¬ããŸããããšãã°ãç»ååé¡ã¿ã¹ã¯ã§ã®ã¯ã©ã¹ã©ãã«ãªã©ã§ãã
äŸïŒç»ååé¡ã¿ã¹ã¯ã§ã¯ãå šçµåå±€ã¯ãç³ã¿èŸŒã¿å±€ãšããŒãªã³ã°å±€ã«ãã£ãŠæœåºãããç¹åŸŽãçµã¿åãããŠãç»åã«ç«ãç¬ããŸãã¯å¥ã®ãªããžã§ã¯ããå«ãŸããŠãããã©ããã倿ããããšãåŠç¿ããå ŽåããããŸãã
CNNãåŠç¿ããæ¹æ³ïŒããã¯ãããã²ãŒã·ã§ã³ã¢ã«ãŽãªãºã
CNNã¯ãããã¯ãããã²ãŒã·ã§ã³ãšåŒã°ããããã»ã¹ãéããŠåŠç¿ããŸããããã«ã¯ããããã¯ãŒã¯ã®äºæž¬ãšçã®ã©ãã«ãšã®å·®ãæå°éã«æããããã«ããã£ã«ã¿ã®éã¿ãšãã¥ãŒãã³éã®æ¥ç¶ã調æŽããããšãå«ãŸããŸãããã®ããã»ã¹ã«ã¯ãæ¬¡ã®æé ãå«ãŸããŸãã
- é æ¹åãã¹ïŒå ¥åããŒã¿ããããã¯ãŒã¯ã«äŸçµŠãããåºåãèšç®ãããŸãã
- æå€±èšç®ïŒãããã¯ãŒã¯ã®åºåãšçã®ã©ãã«ãšã®å·®ã¯ãæå€±é¢æ°ã䜿çšããŠèšç®ãããŸããäžè¬çãªæå€±é¢æ°ã«ã¯ã亀差ãšã³ããããŒæå€±ãšå¹³åäºä¹èª€å·®ããããŸãã
- ããã¯ãããã²ãŒã·ã§ã³ïŒãããã¯ãŒã¯å ã®åéã¿ã«å¯Ÿããæå€±é¢æ°ã®åŸé ãèšç®ãããŸãããã®åŸé ã¯ãæå€±ãæžããããã«åéã¿ãã©ãã ã調æŽããå¿ èŠããããã瀺ããŸãã
- éã¿æŽæ°ïŒéã¿ã¯ã確ççåŸé éäžïŒSGDïŒãAdamãªã©ã®æé©åã¢ã«ãŽãªãºã ã䜿çšããŠãèšç®ãããåŸé ã«åºã¥ããŠæŽæ°ãããŸãã
ãã®ããã»ã¹ã¯ããããã¯ãŒã¯ã®ããã©ãŒãã³ã¹ãæºè¶³ã®ããã¬ãã«ã«åæãããŸã§ãå€§èŠæš¡ãªããŒã¿ã»ããã§ç¹°ãè¿ãå®è¡ãããŸãã
CNNã®å¿çš
CNNã¯ãå¹ åºãã¢ããªã±ãŒã·ã§ã³ã§ç®èŠãŸããæåãåããŠããŸããæ³šç®ãã¹ãäŸãããã€ã瀺ããŸãã
1. ç»åèªèãšåé¡
ããã¯ãããããCNNã®æãããç¥ãããã¢ããªã±ãŒã·ã§ã³ã§ããç»åå ã®ãªããžã§ã¯ãã®åé¡ãé¡ã®èå¥ãææžãæ°åã®èªèãªã©ãå€ãã®ç»åèªèã¿ã¹ã¯ã§äººéã®ããã©ãŒãã³ã¹ãäžåã£ãŠããŸãã
äŸïŒ
- ImageNet ChallengeïŒ AlexNetãVGGNetãResNetãªã©ã®CNNã¯ããªããžã§ã¯ãèªèã®ãã³ãããŒã¯ããŒã¿ã»ããã§ããImageNet Large Scale Visual Recognition ChallengeïŒILSVRCïŒã§ç»æçãªçµæãéæããŸããã
- é¡èªèïŒ CNNã¯ãã»ãã¥ãªãã£ãèªèšŒããœãŒã·ã£ã«ã¡ãã£ã¢ã¢ããªã±ãŒã·ã§ã³ã®é¡èªèã·ã¹ãã ã§äœ¿çšãããŠããŸãã
- å»çç»ååæïŒ CNNã¯ãXç·ãCTã¹ãã£ã³ãMRIãªã©ã®å»çç»åã§ç æ°ãæ€åºããããã«äœ¿çšãããŠããŸããããšãã°ãåŸæ¥ã®ã¡ãœãããããé«ã粟床ã§è «çãç°åžžãæ€åºããŸãã
2. ãªããžã§ã¯ãæ€åº
ãªããžã§ã¯ãæ€åºã«ã¯ãç»åå ã®è€æ°ã®ãªããžã§ã¯ããèå¥ããŠé 眮ããããšãå«ãŸããŸããCNNã¯ããªããžã§ã¯ããåé¡ããå¢çããã¯ã¹ãäºæž¬ããããã«äœ¿çšãããŸãã
äŸïŒ
- èªåéè»¢ïŒ CNNã¯ãèªåé転è»ã®éèŠãªã³ã³ããŒãã³ãã§ãããæ©è¡è ãè»äž¡ãäº€éæšèãããã³ç°å¢å ã®ä»ã®ãªããžã§ã¯ããæ€åºã§ããããã«ããŸãã
- ãããªç£èŠïŒ CNNã¯ãç£èŠã«ã¡ã©ããã®ãããªæ åã§äžå¯©ãªæŽ»åããªããžã§ã¯ããæ€åºããããã«äœ¿çšã§ããŸãã
- å°å£²åæïŒãªããžã§ã¯ãæ€åºããŒã¿ã«åºã¥ããŠãååã®é 眮ã顧客ã®è¡åãç¹å®ããåºèã®ã¬ã€ã¢ãŠããæé©åããŸãã
3. èªç¶èšèªåŠçïŒNLPïŒ
CNNã¯ãæåã¯ç»ååŠççšã«èšèšãããŸããããNLPã«ãå¿çšãããŠããŸããããã¹ãããŒã¿ããç¹åŸŽãæœåºããææ åæãããã¹ãåé¡ãæ©æ¢°ç¿»èš³ãªã©ã®ã¿ã¹ã¯ãå®è¡ããããã«äœ¿çšã§ããŸãã
äŸïŒ
- ææ åæïŒããã¹ãã§è¡šçŸãããææ ïŒããžãã£ãããã¬ãã£ãããŸãã¯ãã¥ãŒãã©ã«ïŒã倿ããŸãã
- ããã¹ãåé¡ïŒããã¹ããããã¥ãŒã¹èšäºãã¹ãã ã¡ãŒã«ã補åã¬ãã¥ãŒãªã©ãããŸããŸãªã«ããŽãªã«åé¡ããŸãã
- æ©æ¢°ç¿»èš³ïŒããã¹ããããèšèªããå¥ã®èšèªã«ç¿»èš³ããŸãããã©ã³ã¹ãã©ãŒããŒãçŸåšåªå¢ã§ããã以åã¯CNNã广çã«äœ¿çšãããŠããŸããã
4. ãããªåæ
CNNã¯ãåã ã®ãã¬ãŒã ãŸãã¯ãã¬ãŒã ã®ã·ãŒã±ã³ã¹ãåŠçããããšã«ããããããªããŒã¿ãåæããããã«æ¡åŒµã§ããŸããããã«ããããããªåé¡ãã¢ã¯ã·ã§ã³èªèããªããžã§ã¯ã远跡ãªã©ã®ã¢ããªã±ãŒã·ã§ã³ãå¯èœã«ãªããŸãã
äŸïŒ
- ã¢ã¯ã·ã§ã³èªèïŒãããªã§å®è¡ãããŠããã¢ã¯ã·ã§ã³ïŒå®è¡ããžã£ã³ãããã³ã¹ãªã©ïŒãèå¥ããŸãã
- ãããªç£èŠïŒãããªã¹ããªãŒã ã§ç°åžžãªã€ãã³ããè¡åãæ€åºããŸãã
- ã¹ããŒãåæïŒãã¬ãŒã€ãŒã®åããã²ãŒã æŠç¥ãåæããã¹ããŒããããªã®éèŠãªç¬éãç¹å®ããŸãã
5. é³å£°åŠç
CNNã¯ããªãŒãã£ãªä¿¡å·ããæéã®çµéã«äŒŽããªãŒãã£ãªã®åšæ³¢æ°å 容ã®èŠèŠç衚çŸã§ããã¹ãã¯ããã°ã©ã ã«å€æããããšã«ããããªãŒãã£ãªããŒã¿ãåŠçããããã«ã䜿çšã§ããŸããæ¬¡ã«ãCNNããã¬ãŒãã³ã°ããŠãé³å£°ã鳿¥œãç°å¢é³ãªã©ãã¹ãã¯ããã°ã©ã å ã®ãã¿ãŒã³ãèªèã§ããŸãã
äŸïŒ
- é³å£°èªèïŒè©±ãããåèªãããã¹ãã«æžãèµ·ãããŸãã
- 鳿¥œãžã£ã³ã«åé¡ïŒé³æ¥œãã©ãã¯ã®ãžã£ã³ã«ãç¹å®ããŸãã
- ç°å¢é³æ€åºïŒäº€ééšé³ãåç©ã®é³ãã¢ã©ãŒã ãªã©ãç°å¢å ã®ããŸããŸãªé³ãèå¥ããŸãã
CNNã®å©ç¹
CNNã¯ãåŸæ¥ã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãããããã€ãã®å©ç¹ããããŸãã
- èªåç¹åŸŽæœåºïŒ CNNã¯ãå ¥åããŒã¿ããé¢é£ããç¹åŸŽãèªåçã«åŠç¿ãããããæåã§ã®ç¹åŸŽãšã³ãžãã¢ãªã³ã°ãäžèŠã«ãªããŸãã
- 空éçéå±€åŠç¿ïŒ CNNã¯ãããŒã¿ã®è€éãªé¢ä¿ãæããªãããç¹åŸŽã®é局衚çŸãåŠç¿ã§ããŸãã
- ããªãšãŒã·ã§ã³ã«å¯Ÿããå ç¢æ§ïŒ CNNã¯ãå°ããªã·ãããå転ãã¹ã±ãŒã«ã®å€åãªã©ãå ¥åããŒã¿ã®ããªãšãŒã·ã§ã³ã«å¯ŸããŠæ¯èŒçå ç¢ã§ãã
- ã¹ã±ãŒã©ããªãã£ïŒ CNNã¯ãå€§èŠæš¡ãªããŒã¿ã»ãããšè€éãªåé¡ãåŠçããããã«ã¹ã±ãŒãªã³ã°ã§ããŸãã
CNNã®èª²é¡
å€ãã®å©ç¹ã«ãããããããCNNã¯ããã€ãã®èª²é¡ã«ãçŽé¢ããŠããŸãã
- èšç®ã³ã¹ãïŒ CNNã®ãã¬ãŒãã³ã°ã¯ãç¹ã«å€§èŠæš¡ãªããŒã¿ã»ãããšè€éãªã¢ãŒããã¯ãã£ã®å Žåãèšç®ã³ã¹ããé«ããªãå¯èœæ§ããããŸãã
- ããŒã¿èŠä»¶ïŒ CNNã¯ãéåžžãè¯å¥œãªããã©ãŒãã³ã¹ãéæããããã«ã倧éã®ã©ãã«ä»ãããŒã¿ãå¿ èŠãšããŸãã
- è§£éå¯èœæ§ïŒ CNNã¯è§£éãé£ããå Žåããããç¹å®ã®äºæž¬ãè¡ãçç±ãçè§£ããããšãå°é£ã«ãªããŸãã説æå¯èœãªAIïŒXAIïŒææ³ã¯ãããã«å¯ŸåŠããããã«ç©æ¥µçã«ç ç©¶ãããŠããŸãã
- éå°é©åïŒ CNNã¯éå°é©åãèµ·ããããããªããŸããããã¯ããããã¯ãŒã¯ããã¬ãŒãã³ã°ããŒã¿ãé床ã«åŠç¿ããæªèŠã®ããŒã¿ã«å¯ŸããŠããã©ãŒãã³ã¹ãäœäžããå Žåã«çºçããŸããæ£ååãããããã¢ãŠããããŒã¿æ¡åŒµãªã©ã®ææ³ã¯ãããã軜æžããããã«äœ¿çšãããŸãã
é«åºŠãªCNNã¢ãŒããã¯ãã£ãšãã¯ããã¯
CNNã®åéã¯åžžã«é²åããŠããããã®ããã©ãŒãã³ã¹ãåäžããããã®å¶éã«å¯ŸåŠããããã«ãæ°ããã¢ãŒããã¯ãã£ãšæè¡ãéçºãããŠããŸããæ³šç®ãã¹ãäŸãããã€ã瀺ããŸãã
1. ResNetïŒResidual NetworksïŒ
ResNetã¯ãã¹ãããæ¥ç¶ã®æŠå¿µãå°å ¥ãããããã¯ãŒã¯ãåºæ¬çãªæ©èœãçŽæ¥åŠç¿ããã®ã§ã¯ãªããæ®å·®ãããã³ã°ãåŠç¿ã§ããããã«ããŸãããããã«ãããã¯ããã«æ·±ããããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãå¯èœã«ãªããè€éãªã¿ã¹ã¯ã§ã®ããã©ãŒãã³ã¹ãåäžããŸãã
2. Inception Networks
Inception Networksã¯ãåå±€ã§ç°ãªããµã€ãºã®è€æ°ã®ãã£ã«ã¿ã䜿çšãããããã¯ãŒã¯ãããŸããŸãªã¹ã±ãŒã«ã§ç¹åŸŽããã£ããã£ã§ããããã«ããŸããããã«ãããããŸããŸãªãµã€ãºãšåœ¢ç¶ã®ãªããžã§ã¯ããèªèãããããã¯ãŒã¯ã®èœåãåäžããŸãã
3. DenseNetïŒDensely Connected Convolutional NetworksïŒ
DenseNetã¯ãåå±€ããããã¯ãŒã¯ã®ä»ã®ãã¹ãŠã®å±€ã«æ¥ç¶ããå¯ãªãããã¯ãŒã¯æ§é ãäœæããŸããããã«ãããç¹åŸŽã®åå©çšãæ¹åãããåŸé æ¶å€±ã®åé¡ã軜æžãããŸãã
4. 転移åŠç¿
転移åŠç¿ã«ã¯ãæ°ããã¿ã¹ã¯ã®éå§ç¹ãšããŠãäºåã«ãã¬ãŒãã³ã°ãããCNNã¢ãã«ã䜿çšããããšãå«ãŸããŸããããã¯ãç¹ã«æ°ããã¿ã¹ã¯ãã¢ãã«ãå ã ãã¬ãŒãã³ã°ãããã¿ã¹ã¯ãšé¡äŒŒããŠããå Žåããã¬ãŒãã³ã°æéãšããŒã¿èŠä»¶ãå€§å¹ ã«åæžã§ããŸãã
5. ããŒã¿æ¡åŒµ
ããŒã¿æ¡åŒµã«ã¯ãå転ãããªãããã¯ããããªã©ãããŸããŸãªå€æãæ¢åã®ããŒã¿ã«é©çšããããšã«ããããã¬ãŒãã³ã°ããŒã¿ã»ããã®ãµã€ãºã人çºçã«å¢ããããšãå«ãŸããŸããããã«ããããããã¯ãŒã¯ã®å ç¢æ§ãšäžè¬åèœåãåäžããŸãã
CNNã®æªæ¥
CNNã¯ã人工ç¥èœã®é²æ©ã«ãããŠåŒãç¶ãéèŠãªåœ¹å²ãæãããšäºæ³ãããŠããŸããå°æ¥ã®ç ç©¶ã®æ¹åæ§ã«ã¯ã次ã®ãããªãã®ããããŸãã
- ããå¹ççã§ã¹ã±ãŒã©ãã«ãªCNNã¢ãŒããã¯ãã£ã®éçºãããã«ã¯ããããã¯ãŒã¯ãã«ãŒãã³ã°ãéååãããŒããŠã§ã¢ã¢ã¯ã»ã©ã¬ãŒã·ã§ã³ãªã©ã®æè¡ã®æ¢æ±ãå«ãŸããŸãã
- CNNã®è§£éå¯èœæ§ã®åäžãããã«ã¯ãCNNãåŠç¿ããç¹åŸŽãèŠèŠåããŠçè§£ããæ¹æ³ã®éçºãå«ãŸããŸãã
- CNNãããè€éãªããŒã¿åã«å¯Ÿå¿ãããããã®æ¡åŒµãããã«ã¯ã3DããŒã¿ãã°ã©ãããŒã¿ãæç³»åããŒã¿ãåŠçããããã®CNNã®éçºãå«ãŸããŸãã
- CNNãšä»ã®AIæè¡ã®çµ±åãããã«ã¯ãCNNãšåŒ·ååŠç¿ãçææµå¯Ÿãããã¯ãŒã¯ïŒGANïŒãããã³ãã®ä»ã®ãã£ãŒãã©ãŒãã³ã°ã¢ãã«ã®çµã¿åãããå«ãŸããŸãã
ã°ããŒãã«ãªèæ ®äºé ãšå«çç圱é¿
CNNãæ®åããã«ã€ããŠããã®äžççãªåœ±é¿ãšå«çç圱é¿ãèæ ®ããããšãéèŠã§ãããããã«ã¯ä»¥äžãå«ãŸããŸãã
- ãã¬ãŒãã³ã°ããŒã¿ã®ãã€ã¢ã¹ïŒ CNNã¯ããã¬ãŒãã³ã°ããŒã¿ã«ååšãããã€ã¢ã¹ãæ°žç¶åããå¢å¹ ããå¯èœæ§ããããŸããããšãã°ãäž»ã«çœäººã®é¡ã§ãã¬ãŒãã³ã°ãããé¡èªèã·ã¹ãã ã¯ãããŸããŸãªæ°æã®äººã ã«å¯ŸããŠããã©ãŒãã³ã¹ãäœäžããå¯èœæ§ããããŸãããã€ã¢ã¹ã«å¯ŸåŠããã«ã¯ãæ éãªããŒã¿åéãååŠçãããã³ã¢ã«ãŽãªãºã ã®èšèšãå¿ èŠã§ããäžçã®äººå£ã®å€æ§æ§ãåæ ããã°ããŒãã«ãªããŒã¿ã»ãããäžå¯æ¬ ã§ãã
- ãã©ã€ãã·ãŒã«é¢ããæžå¿µïŒç£èŠãšé¡èªèã«äœ¿çšãããCNNã¯ãé倧ãªãã©ã€ãã·ãŒã«é¢ããæžå¿µãåŒãèµ·ãããŸããå人ã®ãã©ã€ãã·ãŒæš©ãä¿è·ããããã«ããããã®ãã¯ãããžãŒã®äœ¿çšã«é¢ããæç¢ºãªã¬ã€ãã©ã€ã³ãšèŠå¶ã確ç«ããããšãéèŠã§ããããŸããŸãªåœã«ã¯ãããŸããŸãªããŒã¿ãã©ã€ãã·ãŒæ³ïŒããšãã°ããšãŒãããã®GDPRïŒããããèæ ®ããå¿ èŠããããŸãã
- éçšã®åªå€±ïŒ CNNã®èªååæ©èœã¯ãç¹å®ã®æ¥çã§éçšã®åªå€±ã«ã€ãªããå¯èœæ§ããããŸããæ¿çç«æ¡è ã¯ãåèšç·Žããã°ã©ã ã倱æ¥è ã®ããã®æ¯æŽãªã©ããããã®åœ±é¿ã軜æžããããã®æŠç¥ãéçºããå¿ èŠããããŸãã圱é¿ã¯ãããŸããŸãªçµæžãšå°åã«ãã£ãŠç°ãªããŸãã
- ã¢ã¯ã»ã¹å¯èœæ§ãšæé ãªäŸ¡æ ŒïŒ CNNããŒã¹ã®ãã¯ãããžãŒã®éçºãšå±éã¯ãçµæžç¶æ³ã«é¢ä¿ãªãããã¹ãŠã®åœãšã³ãã¥ããã£ãã¢ã¯ã»ã¹ã§ããæé ãªäŸ¡æ Œã§ããå¿ èŠããããŸããå ¬å¹³ãªã¢ã¯ã»ã¹ãä¿é²ããã«ã¯ããªãŒãã³ãœãŒã¹ã®ã€ãã·ã¢ãããšç¥èå ±æãäžå¯æ¬ ã§ãã
çµè«
ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã¯ãå¹ åºããã¡ã€ã³ã«ãããã¢ããªã±ãŒã·ã§ã³ãæã€ããã£ãŒãã©ãŒãã³ã°ã®ããã®åŒ·åã§çšéã®åºãããŒã«ã§ããç¹åŸŽãèªåçã«æœåºãã空éçéå±€ãåŠç¿ããèœåã¯ãããããçŸä»£ã®AIã®åºç€ãšããŠããŸããCNNãé²åãç¶ããã«ã€ããŠããããã¯ãã¯ãããžãŒã®æªæ¥ã圢äœãäžã§ããã«å€§ããªåœ¹å²ãæããããã«æºåãããŠããŸããCNNã®ã³ã¢ã³ã³ã»ãããã¢ãŒããã¯ãã£ãããã³å«ççèæ ®äºé ãçè§£ããããšã¯ã人工ç¥èœã®åéã§åã人ããŸãã¯ãã®åœ±é¿ãåãã人ã«ãšã£ãŠäžå¯æ¬ ã§ãã