ã¢ãŒã圢åŒãšããŠã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãæ·±ãæãäžããæ å ±çŸåŠãåµé çæè¡ãå«ççé æ ®ããããŠãã®äžççãªåœ±é¿ãæ¢ããŸãã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãïŒæ å ±çŸåŠã®äžççæ¢æ±
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¯ãåãªããã£ãŒããã°ã©ããè¶ ããŠé²åããŸãããããã¯èžè¡ç衚çŸã®ããã®åŒ·åãªåªäœãšãªããçããŒã¿ãé åçãªç©èªãçŸçã«å¿å°ããäœéšãžãšå€æããŠããŸãããã®ããã°èšäºã§ã¯ãããŒã¿ãã¢ãŒãããã¯ãããžãŒã®é åçãªäº€å·®ç¹ãæ¢ããæ å ±çŸåŠã®ååãæ€èšŒããäžçäžã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®äŸã玹ä»ããŸãã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒããšã¯ïŒ
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã¯ãæ å ±ãäŒéãããšããæ©èœçãªèŠä»¶ãè¶ ããŠããŸããããã¯çŸçé åãšææ çãªåœ±é¿ãåªå ããããŒã¿ãåµé ç衚çŸã®ããã®çŽ æãšããŠäœ¿çšããŸããåŸæ¥ã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãæç¢ºããšæ£ç¢ºããç®æãã®ã«å¯ŸããããŒã¿ã¢ãŒãã¯ææ ãåŒã³èµ·ãããæèãä¿ããèŠç¹ã«ææŠããããšãç®æããŸããè²ã圢ããã¯ã¹ãã£ãã¢ãã¡ãŒã·ã§ã³ãªã©ã®èŠèŠçèŠçŽ ã䜿çšããŠãããŒã¿ãé åçã§ç€ºåã«å¯ãã¢ãŒãã¯ãŒã¯ã«å€æããŸãã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®äž»ãªç¹åŸŽïŒ
- çŸççŠç¹ïŒ èŠèŠçãªé åãšèžè¡ç衚çŸãåªå ããŸãã
- ææ ç圱é¿ïŒ ææ ãåŒã³èµ·ãããããæ·±ãã¬ãã«ã§éè³è ãšç¹ããããšãç®æããŸãã
- ç©èªæ§ã®ããã¹ããŒãªãŒããªã³ã°ïŒ ããŒã¿ã䜿ã£ãŠé åçãªç©èªãèªããè€éãªã¡ãã»ãŒãžãäŒããŸãã
- æ¢æ±ãšçºèŠïŒ éè³è ãç¬èªã®æ¹æ³ã§ããŒã¿ãæ¢çŽ¢ããè§£éããããšã奚å±ããŸãã
- æ¹å€çèŠç¹ïŒ ããŒã¿ãšãã®è§£éã«é¢ããæ¢åã®èŠç¯ãèŠç¹ã«ãã°ãã°ææŠããŸãã
æ å ±çŸåŠã®åå
æ å ±çŸåŠã¯ãæ å ±ã®çŸçç¹è³ªã«é¢ããç ç©¶ã§ããèŠèŠçèŠçŽ ãããŒã¿ãšã®ææçŸ©ã§é åçãªäœéšãåµé ããããã«ã©ã®ããã«äœ¿çšã§ããããæ¢ããŸããäž»ãªååã¯æ¬¡ã®ãšããã§ãã
æç¢ºããšçè§£ãããã
èžè¡ç衚çŸãæãéèŠã§ããäžæ¹ã§ãèŠèŠåã¯äŸç¶ãšããŠçè§£å¯èœã§ãªããã°ãªããŸãããåç Žããªæ¹æ³ã§æç€ºããããšããŠããæ ¹åºã«ããããŒã¿ã®é¢ä¿ã¯èå¥å¯èœã§ããã¹ãã§ããé床ã«è€éãŸãã¯çŽããããããžã¥ã¢ã«ã§ããŒã¿ãææ§ã«ããããšã¯é¿ããŠãã ãããåœéçãªèªè ã¯ãæåçèæ¯ãããŒã¿ã»ããã«é¢ããäºåç¥èã«é¢ä¿ãªããäž»èŠãªã¡ãã»ãŒãžãçè§£ã§ããå¿ èŠããããŸããã©ããªã³ã°ãšæç¢ºãªèŠèŠçãšã³ã³ãŒãã£ã³ã°ãéµãšãªããŸãã
èŠèŠçãªèª¿åãšãã©ã³ã¹
èŠèŠçã«é åçãªæ§æãäœæããããšãéèŠã§ããèŠçŽ ã®é 眮ãã«ã©ãŒãã¬ããã®äœ¿çšããã¶ã€ã³å šäœã®ãã©ã³ã¹ãèæ ®ããŠãã ãããèŠèŠçãªèª¿åã¯ãéè³è ã®ãšã³ã²ãŒãžã¡ã³ããé«ããããŒã¿ãããã¢ã¯ã»ã¹ããããããããšãã§ããŸããé»éæ¯ã®ãããªãã¶ã€ã³ã®ååã䜿çšããŠãã©ã³ã¹ããšãããšãã§ããŸãã
ææçŸ©ãªæœè±¡å
ããŒã¿ã广çã«èŠèŠåããããã«ã¯ããã°ãã°æœè±¡åãå¿ èŠã§ããããã«ã¯ãè€éãªæ å ±ãåçŽåããçè§£ããããèŠèŠåœ¢åŒã§è¡šçŸããããšãå«ãŸããŸããæœè±¡åã®ã¬ãã«ã¯ã察象ãšãªãèŠèŽè ãšèŠèŠåã®ç®çã«é©ããŠããå¿ èŠããããŸããèŠèŠåãæããã«ãã¹ãäž»èŠãªé¢ä¿ãæŽå¯ã«ã€ããŠèããŠãã ããã
ã€ã³ã¿ã©ã¯ãã£ããªãšã³ã²ãŒãžã¡ã³ã
ã€ã³ã¿ã©ã¯ãã£ããªããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã«ãããéè³è ã¯èªåã®ããŒã¹ã§ããŒã¿ãæ¢çŽ¢ã§ããŸããããã«ãããæ å ±ãžã®çè§£ãšãšã³ã²ãŒãžã¡ã³ããåäžããŸãããã£ã«ã¿ãªã³ã°ããºãŒã ãããªã«ããŠã³æ©èœãªã©ã®æ©èœã远å ããããšãæ€èšããŠãã ãããã€ã³ã¿ã©ã¯ãã£ããªèŠçŽ ã¯ãç©èªãéªéããã®ã§ã¯ãªãã匷åããã¹ãã§ãã
å«ççé æ ®
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã¯ãå«ççãªé æ ®ãæèµ·ããŸããããŒã¿ãœãŒã¹ãæ¹æ³è«ãæœåšçãªãã€ã¢ã¹ã«ã€ããŠéææ§ãä¿ã€ããšãéèŠã§ããçå®ãæªããå¯èœæ§ã®ããã誀解ãæããããªããŸãã¯æäœçãªããžã¥ã¢ã«ã®äœ¿çšã¯é¿ããã¹ãã§ããä¿¡é Œæ§ãšä¿¡çšãç¶æããããã«ã¯ã責任ããå«ççãªæ¹æ³ã§ããŒã¿ãæç€ºããããšãäžå¯æ¬ ã§ãã
äžçäžã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®äŸ
ããã§ã¯ãããŸããŸãªã¢ãããŒããšãã¯ããã¯ã瀺ããäžçäžã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®äŸãããã€ã玹ä»ããŸãã
1. Golan Levinã®ãThe Dumpster ProjectãïŒã¢ã¡ãªã«ïŒ
ãã®ãããžã§ã¯ãã¯ã廿£ãããé»å廿£ç©ãã€ã³ã¿ã©ã¯ãã£ããªã¢ãŒãã€ã³ã¹ã¿ã¬ãŒã·ã§ã³ã«å€æããç°å¢åé¡ãšæ¶è²»äž»çŸ©ã«ã€ããŠã®æèãé«ããŸãããèšå€§ãªéã®å»æ£ç©ã®èŠèŠç衚çŸã¯ã匷åãªã¹ããŒãã¡ã³ãã§ãã
2. Moritz Stefanerã®ãSelf-SurveillanceãïŒãã€ãïŒ
ãã®ãããžã§ã¯ãã¯ãå人ã®è¿œè·¡ããã€ã¹ïŒãã£ãããã¹ãã©ãã«ãŒãªã©ïŒãéããŠåéãããããŒã¿ã調æ»ããåããç¡ç ãæŽ»åã®ãã¿ãŒã³ãèŠèŠåããŸããããã©ã€ãã·ãŒãããŒã¿æææš©ãèªå·±ç£èŠã®æå³åãã«ã€ããŠåé¡ãæèµ·ããŸãããã®èŠèŠåã§ã¯ãæ¥ã ã®æŽ»åã®æµãã衚ãããã«ææ©çãªåœ¢ã䜿çšãããŠããŸãã
3. æ± ç°äº®åžã®ãDatamaticsãïŒæ¥æ¬ïŒ
æ± ç°æ°ã¯ãçããŒã¿ã䜿çšããŠæ²¡å ¥åã®ãªãŒãã£ãªããžã¥ã¢ã«ã€ã³ã¹ã¿ã¬ãŒã·ã§ã³ãå¶äœããæœè±¡çã§é æçãªäœéšãåµé ããŸãããDatamaticsãã¯ããŒã¿è¡šçŸã®å¢çãæŒãåºããæ°å€ããŒã¿ãæèŠçãªã¹ãã¯ã¿ã¯ã«ã«å€æããŸããããŒã¿ãå ãšé³ãçšããŠèžè¡çãªäœéšã«å€ããããçŽ æŽãããäŸã§ãã
4. Accuratã®ãData VeilsãïŒã€ã¿ãªã¢ïŒ
Accuratã¯ãç¹çްã§è€éãªèŠèŠåã䜿çšããŠè€éãªããŒã¿ã»ããã衚çŸãããã°ãã°ç€ŸäŒçããã³æåççŸè±¡ã«çŠç¹ãåœãŠãŠããŸãã圌ãã®ã¢ãããŒãã¯éåžžã«èŠèŠçã§ãç¬èªã®ã°ãªããè€éãªãã¿ãŒã³ãçšããŠæå³ãäŒããŸããç§»äœãã¿ãŒã³ã®æµããèŠèŠåãã圌ãã®äœåã¯ç¹ã«èª¬åŸåããããŸãã
5. Nadieh Bremerã®ãVisual CinnamonãïŒãªã©ã³ãïŒ
Nadieh Bremerã¯ãæçã§çŸçã«å¿å°ããææãã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãäœæããŸãã圌女ã¯ãã°ãã°åç Žããªãã£ãŒãã¿ã€ããè€éãªè©³çްã䜿çšããŠããŒã¿ã§ç©èªãèªããŸãã圌女ã®å人çãªãããžã§ã¯ãã¯ããã°ãã°å¥æãªãããã¯ãæ¢æ±ããããŒã¿èŠèŠåã«å¯Ÿããæ°æ¥œãªã¢ãããŒãã瀺ããŠããŸãã
6. Lev Manovichã®ãSelfiecityãïŒã°ããŒãã«ïŒ
ãã®ãããžã§ã¯ãã¯ãäžçäžã®äœåãã®ã»ã«ãã£ãŒãåæããèªå·±è¡šçŸã®ãã¿ãŒã³ãšãã¬ã³ããç¹å®ããŸãããæåçãªéããã»ã«ãã£ãŒãšããäžççãªçŸè±¡ã«ã€ããŠã®æŽå¯ãæäŸããŸãããã®ãããžã§ã¯ãã¯ãããŒãºã衚æ ã人å£çµ±èšã«ãããè峿·±ãå°åå·®ãæããã«ããŸãã
7. Domestic Data StreamersïŒã¹ãã€ã³ïŒ
ãã®ã³ã¬ã¯ãã£ãã¯ãæ¥åžžçæŽ»ãæ¢æ±ããã€ã³ã¿ã©ã¯ãã£ããªããŒã¿ã€ã³ã¹ã¿ã¬ãŒã·ã§ã³ãäœæãããã°ãã°ç©ççãªçŽ æãè§ŠèŠçãªã€ã³ã¿ãŒãã§ãŒã¹ã䜿çšããŸãã圌ãã®äœåã¯ãããŒã¿ãžã®äžè¬ã®é¢äžãä¿ãã瀟äŒåé¡ãžã®ããæ·±ãçè§£ãè²ã¿ãŸãã圌ãã¯ã糞ããé£åãŸã§ãããããã®ã䜿çšããŠãåµé çãªæ¹æ³ã§ããŒã¿ã衚çŸããã€ã³ã¹ã¿ã¬ãŒã·ã§ã³ãäœæããŠããŸããã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒããäœæããããã®ãã¯ããã¯
广çãªããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒããäœæããã«ã¯ãæè¡çãªã¹ãã«ãšèžè¡çãªææ§ã®çµã¿åãããå¿ èŠã§ããèæ ®ãã¹ããã¯ããã¯ãããã€ã玹ä»ããŸãã
é©åãªèŠèŠåãã¯ããã¯ã®éžæ
æ±ã£ãŠããããŒã¿ã®çš®é¡ãšäŒãããã¡ãã»ãŒãžã«é©ããèŠèŠåãã¯ããã¯ãéžæããŠãã ãããããŸããŸãªãã£ãŒãã¿ã€ããã«ã©ãŒãã¬ãããèŠèŠçæ¯å©ã詊ããŠã¿ãŠãã ãããæšæºçãªæ£ã°ã©ããæãç·ã°ã©ã以å€ã®ãã¯ããã¯ãäŸãã°ãããã¯ãŒã¯ãããããã«ã¹ã¿ã ã®èŠèŠåœ¢åŒãªã©ãæ€èšããŠãã ãããèŠèŽè ãèãã圌ãã«é¿ããã¯ããã¯ãéžã³ãŸãããã
è²ã®å¹æçãªäœ¿çš
è²ã¯ãæå³ãäŒããèŠèŠçãªã€ã³ãã¯ããçã¿åºãããã®åŒ·åãªããŒã«ãšãªãåŸãŸãããã¶ã€ã³å šäœãšèª¿åããäžè²«æ§ã®ããã«ã©ãŒãã¬ããã䜿çšããŠãã ãããããŸããŸãªè²ã®æåçãªæå³åããèæ ®ãã察象ã®èŠèŽè ã«é©ãããã¬ãããéžæããŠãã ãããè²èŠç°åžžã®ã¢ã¯ã»ã·ããªãã£ã«ã€ããŠãèŠèŠåããã¹ãããŠãã ããã
ã€ã³ã¿ã©ã¯ãã£ããã£ã®è¿œå
ã€ã³ã¿ã©ã¯ãã£ããªèŠçŽ ã¯ãéè³è ã®ãšã³ã²ãŒãžã¡ã³ããé«ããèªåã®ããŒã¹ã§ããŒã¿ãæ¢çŽ¢ããããšãå¯èœã«ããŸãããã£ã«ã¿ãªã³ã°ããºãŒã ãããªã«ããŠã³æ©èœãªã©ã®æ©èœã远å ããããšãæ€èšããŠãã ãããã€ã³ã¿ã©ã¯ã·ã§ã³ãçŽæçã§äœ¿ããããããšã確èªããŠãã ãããã¿ããã¹ã¯ãªãŒã³ã€ã³ã¿ãŒãã§ãŒã¹ã¯ãããŒã¿ãšå¯Ÿè©±ããèªç¶ãªæ¹æ³ãæäŸã§ããŸãã
ã¹ããŒãªãŒããªã³ã°ã®çµã¿èŸŒã¿
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã¯ãé åçãªç©èªãèªããè€éãªã¡ãã»ãŒãžãäŒããããã«äœ¿çšã§ããŸããç©èªã®ãã¯ããã¯ã䜿çšããŠãéè³è ãããŒã¿ãéããŠå°ããäž»èŠãªæŽå¯ã匷調ããŸããå šäœã®ç©èªã®æ§æãšèŠèŠåã®ææ çãªåœ±é¿ãèæ ®ããŠãã ãããæ³šéã説ææã䜿çšããŠãæèãæäŸããéè³è ã®è§£éãå°ããŸãã
ç©ççãªçŽ æã§ã®å®éš
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã¯ãããžã¿ã«ã¹ã¯ãªãŒã³ã«éå®ãããå¿ èŠã¯ãããŸãããæšæãéå±ãããã¹ã¿ã€ã«ãªã©ã®ç©ççãªçŽ æã䜿çšããŠãè§Šããããšã®ã§ããããŒã¿è¡šçŸãäœæããããšãæ€èšããŠãã ãããç©ççãªèŠèŠåã¯ãæèŠçã§ã€ã³ã¿ã©ã¯ãã£ããªæ¹æ³ã§èŽè¡ãåŒãä»ããã®ã«ç¹ã«å¹æçã§ããã¢ãŒãã¯ãŒã¯ã®ç©è³ªæ§ãããŒã¿ã®æå³ãšåœ±é¿ãã©ã®ããã«é«ããããšãã§ããããèããŠãã ããã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®ããã®ããŒã«ãšãªãœãŒã¹
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒããäœæããããã«ãæ°å€ãã®ããŒã«ãšãªãœãŒã¹ãå©çšå¯èœã§ãã
ããã°ã©ãã³ã°èšèª
- Python: ããŒã¿åæãšèŠèŠåã§äººæ°ããããMatplotlibãSeabornãPlotlyãªã©ã®ã©ã€ãã©ãªããããŸãã
- R: çµ±èšèšç®ãšã°ã©ãã£ãã¯ã¹çšã§ãggplot2ãShinyã®ãããªããã±ãŒãžããããŸãã
- JavaScript: ã€ã³ã¿ã©ã¯ãã£ããªãŠã§ãããŒã¹ã®èŠèŠåãäœæããããã«äœ¿çšãããD3.jsãChart.jsãThree.jsãªã©ã®ã©ã€ãã©ãªããããŸãã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãœãããŠã§ã¢
- Tableau: ã€ã³ã¿ã©ã¯ãã£ããªããã·ã¥ããŒããšèŠèŠåãäœæããããã®äººæ°ã®åçšããŒã«ã§ãã
- Power BI: ããŒã¿åæãšèŠèŠåã®ããã®Microsoftã®ããžãã¹ã€ã³ããªãžã§ã³ã¹ããŒã«ã§ãã
- RawGraphs: ãã¯ã¿ãŒããŒã¹ã®èŠèŠåãäœæããããã®ãªãŒãã³ãœãŒã¹ããŒã«ã§ãã
ãªã³ã©ã€ã³ãªãœãŒã¹
- Data Visualization Society: ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã®å°éå®¶ãæå¥œå®¶ã®ããã®ã³ãã¥ããã£ã§ãã
- Information is Beautiful Awards: æé«ã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãšã€ã³ãã©ã°ã©ãã£ãã¯ãç¥ã幎次ã³ã³ããã£ã·ã§ã³ã§ãã
- FlowingData: ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã®ã€ã³ã¹ãã¬ãŒã·ã§ã³ãšãã¥ãŒããªã¢ã«ã®ããã®ããã°ãšãªãœãŒã¹ã§ãã
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®æªæ¥
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã¯ãæè¡ã®é²æ©ãšããŒã¿ã®å©çšå¯èœæ§ã®å¢å€§ã«çœåŒãããæ¥éã«é²åããŠããåéã§ããããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®æªæ¥ã¯ã以äžã®ãããªç¹åŸŽãæã€å¯èœæ§ãé«ãã§ãã
ã€ã³ã¿ã©ã¯ãã£ããã£ãšæ²¡å ¥æã®åäž
ä»®æ³çŸå®ïŒVRïŒãæ¡åŒµçŸå®ïŒARïŒæè¡ã¯ãããæ²¡å ¥åã§ã€ã³ã¿ã©ã¯ãã£ããªããŒã¿äœéšãå¯èœã«ããŸããéè³è ã¯ããŒã¿ã®äžã«å ¥ã蟌ã¿ãããçŽæçã§é åçãªæ¹æ³ã§ãããæ¢çŽ¢ã§ããããã«ãªããŸãããããã®æè¡ãããŒã¿ãšã®å¯Ÿè©±æ¹æ³ãã©ã®ããã«å€ãããèããŠã¿ãŠãã ããã
人工ç¥èœã𿩿¢°åŠç¿
AIãšæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã䜿çšããŠãããŒã¿å ã§çºèŠããããã¿ãŒã³ãæŽå¯ã«åºã¥ããŠããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãèªåçã«çæã§ããŸããããã«ãããã¢ãŒãã£ã¹ãã¯èŠèŠåã®åµé çãªåŽé¢ã«éäžã§ããããã«ãªããŸããAIãããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã®ã¹ããŒãªãŒããªã³ã°ãšèžè¡ç衚çŸãã©ã®ããã«åŒ·åã§ããããæ¢æ±ããŠãã ããã
ããŒãœãã©ã€ãºãããã«ã¹ã¿ãã€ãºãããèŠèŠå
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¯ãåã ã®éè³è ã®å¥œã¿ãããŒãºã«åãããŠããŸããŸãããŒãœãã©ã€ãºãããã«ã¹ã¿ãã€ãºãããããã«ãªããŸããããã«ã¯ã人éã®ç¥èŠãšèªç¥ã«é¢ããããæ·±ãçè§£ãå¿ èŠã«ãªããŸããç°ãªãåŠç¿ã¹ã¿ã€ã«ãèªç¥èœåã«åãããŠèŠèŠåãã©ã®ããã«èª¿æŽã§ããããæ€èšããŠãã ããã
å«ççã§è²¬ä»»ããããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ããã匷åã§åœ±é¿åãæã€ããã«ãªãã«ã€ããŠããã®äœ¿çšã®å«ççæå³ãèæ ®ããããšããŸããŸãéèŠã«ãªããŸããå ¬æ£ã§ãéææ§ãããã説æè²¬ä»»ã®ããããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãäœæããããã®ã¬ã€ãã©ã€ã³ãšãã¹ããã©ã¯ãã£ã¹ãéçºããå¿ èŠããããŸãã責任ããããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã®å®è·µãæå±ããäžè¬åžæ°ã®ããŒã¿ãªãã©ã·ãŒãä¿é²ããŠãã ããã
ã°ããŒãã«ãããã§ãã·ã§ãã«åãã®å®çšçãªæŽå¯
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã«èå³ã®ããã°ããŒãã«ãããã§ãã·ã§ãã«åãã®å®çšçãªæŽå¯ãããã€ã玹ä»ããŸãã
- ããŒã¿ãªãã©ã·ãŒã®åäžïŒ ããŒã¿åæãçµ±èšãèŠèŠåæè¡ã®çè§£ãæ·±ããŸãã
- ãã¶ã€ã³ååã®åŠç¿ïŒ ããžã¥ã¢ã«ãã¶ã€ã³ãè²åœ©çè«ãã¿ã€ãã°ã©ãã£ã®ååãåŠã³ãŸãã
- ããŸããŸãªããŒã«ã§ã®å®éšïŒ ããŸããŸãªããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ããŒã«ãããã°ã©ãã³ã°èšèªãæ¢æ±ããŸãã
- ã€ã³ã¹ãã¬ãŒã·ã§ã³ã®æ¢æ±ïŒ ãªã³ã©ã€ã³ã§ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã®ã¢ãŒãã£ã¹ãããã¶ã€ããŒããã©ããŒããå±ç€ºäŒãã«ã³ãã¡ã¬ã³ã¹ã«åå ããŸãã
- å®è·µãšååŸ©ïŒ ç¬èªã®ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãäœæããä»è ããã®ãã£ãŒãããã¯ãæ±ããŸãã
- ã°ããŒãã«ãªèŠèŽè ã®èæ ®ïŒ äžçäžã®å€æ§ãªèŠèŽè ãã¢ã¯ã»ã¹ããçè§£ã§ããèŠèŠåããã¶ã€ã³ããŸããæåçãªåèŠãé¿ããå æ¬çãªèšèªã䜿çšããŸãã
- ã¹ããŒãªãŒããªã³ã°ã«çŠç¹ãåœãŠãïŒ èŠèŽè ã«å ±é³Žããäž»èŠãªæŽå¯ãäŒããé åçãªç©èªãäœæããŸãã
- å«ççå®è·µã®æšé²ïŒ 責任ããããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ãšããŒã¿ã³ãã¥ãã±ãŒã·ã§ã³ã«ãããéææ§ãæå±ããŸãã
çµè«
ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã¯ãåµé çãªè¡šçŸãšã³ãã¥ãã±ãŒã·ã§ã³ã®ããã®ç¡éã®å¯èœæ§ãæäŸããã匷åã§ãšããµã€ãã£ã³ã°ãªåéã§ããæ å ±çŸåŠã®ååãåãå ¥ããããŸããŸãªãã¯ããã¯ã詊ãããã®äœ¿çšã®å«ççæå³ãèæ ®ããããšã§ãç§ãã¡ã¯ããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãã®æœåšèœåãæå€§éã«åŒãåºããäžçèŠæš¡ã§æ å ±ãæäŸããã€ã³ã¹ãã¬ãŒã·ã§ã³ãäžããæèãä¿ãããšãã§ããŸããããŒã¿ãç§ãã¡ã®ç掻ã®äžå¿ã«ãªãã«ã€ããŠãããã广çã«èŠèŠåãè§£éããèœåã¯ãããããåéã®å°éå®¶ã«ãšã£ãŠäžå¯æ¬ ãªã¹ãã«ãšãªãã§ããããããŒã¿ããžã¥ã¢ã©ã€ãŒãŒã·ã§ã³ã¢ãŒãããæ å ±ãç§ãã¡å šå¡ãã€ãªãææçŸ©ã§é åçãªäœéšã«å€ããææ®µãšããŠåãå ¥ããŠãã ããã