ã³ã³ãã¥ãŒã¿ããžã§ã³ã«ãããç©äœæ€åºã®äžçãæ¢æ±ããŸããã¢ã«ãŽãªãºã ãã¢ããªã±ãŒã·ã§ã³ããããŠãã®ç»æçãªæè¡ã®æªæ¥ãçè§£ããŸãããã
ã³ã³ãã¥ãŒã¿ããžã§ã³ïŒç©äœæ€åºã¢ã«ãŽãªãºã ã®è§£æ
ã³ã³ãã¥ãŒã¿ããžã§ã³ã¯ãç§ãã¡ãäžçãšã©ã®ããã«é¢ããããæ¥éã«å€é©ããŠããŸãããã®æ žå¿ã¯ãã³ã³ãã¥ãŒã¿ã人éã®èŠèŠã·ã¹ãã ãæš¡å£ããŠãç»åããããªããèŠããããšããããŠè§£éããããšãå¯èœã«ããããšã§ããã³ã³ãã¥ãŒã¿ããžã§ã³ã«ãããåºæ¬çãªã¿ã¹ã¯ã¯ç©äœæ€åºã§ãããç»åãŸãã¯ãããªãã¬ãŒã å ã®ç©äœãèå¥ãããã®äœçœ®ãç¹å®ããããã»ã¹ã§ãããã®å æ¬çãªã¬ã€ãã§ã¯ãç©äœæ€åºã¢ã«ãŽãªãºã ã®é åçãªäžçãæãäžãããã®åçãã¢ããªã±ãŒã·ã§ã³ããããŠAIã®æªæ¥ã圢äœãç¶ç¶çãªé²æ©ãæ¢æ±ããŸãã
ç©äœæ€åºãšã¯ïŒ
ç©äœæ€åºã¯ãç»åå ã«*äœã*ããããèå¥ããããšãç®çãšããåçŽãªç»ååé¡ãè¶ è¶ããŸãã代ããã«ãç©äœæ€åºã¯ãäœããšãã©ããã®äž¡æ¹ã«çããããšãç®æããŸããç©äœã®ååšãèå¥ããã ãã§ãªããå¢çããã¯ã¹ã䜿çšããŠç»åå ã®ç©äœã®äœçœ®ãç¹å®ããŸãããããã®å¢çããã¯ã¹ã¯ãéåžžã座æšïŒxãyïŒãšå¯žæ³ïŒå¹ ãé«ãïŒã§å®çŸ©ãããæ€åºãããç©äœã广çã«æŠèª¬ããŸãããã®æ©èœã¯ãèªåé転è»ããå»çç»ååæãããããå·¥åŠãŸã§ãå¹ åºãã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠéåžžã«éèŠã§ãã
ç©äœæ€åºã¢ã«ãŽãªãºã ã®é²å
ç©äœæ€åºã®åéã¯ãæ©æ¢°åŠç¿ãç¹ã«æ·±å±€åŠç¿ã®é²æ©ã«ãã£ãŠãç®èŠãŸããé²åãéããŠããŸãããåæã®æ¹æ³ã¯ãæäœãã®ç¹åŸŽãšèšç®ã³ã¹ãã®é«ãããã»ã¹ã«äŸåããŠããŸãããããããæ·±å±€åŠç¿ãç¹ã«ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã®åºçŸã¯ããã®åéã«é©åœãããããã粟床ãšé床ãå€§å¹ ã«åäžãããŸããã
åæã®ã¢ãããŒãïŒæ·±å±€åŠç¿ä»¥åïŒ
- Viola-Jonesã¢ã«ãŽãªãºã ïŒããã¯ãæãåæã§åœ±é¿åã®ããç©äœæ€åºã¢ã«ãŽãªãºã ã®1ã€ã§ãããç¹ã«ãªã¢ã«ã¿ã€ã ã®é¡æ€åºæ©èœã§ç¥ãããŠããŸããHaar-likeç¹åŸŽãç©åç»å衚çŸãããã³åé¡åšã®ã«ã¹ã±ãŒããå©çšããŠãç©äœãå¹ççã«èå¥ããŸããã
- Histogram of Oriented GradientsïŒHOGïŒ+ Support Vector MachinesïŒSVMïŒïŒãã®ã¢ãããŒãã§ã¯ãç»åå ã®åŸé ã®ååžãèšè¿°ããHOGç¹åŸŽãæœåºãããããã®ç¹åŸŽã«åºã¥ããŠSVMåé¡åšããã¬ãŒãã³ã°ããŠç©äœãèå¥ããŸãã广çã§ã¯ãããŸãããããããã®æ¹æ³ã¯æäœãã®ç¹åŸŽãžã®äŸåã«ãã£ãŠå¶éãããããšãå€ããåŸã®æ·±å±€åŠç¿ã¢ãããŒãã»ã©æ£ç¢ºã§ã¯ãããŸããã§ããã
深局åŠç¿æä»£ïŒãã©ãã€ã ã·ãã
深局åŠç¿ã¯ãç©äœæ€åºã®ç¶æ³ãæ ¹æ¬çã«å€ããŸãããCNNã¯ãçã®ãã¯ã»ã«ããŒã¿ããéå±€çãªç¹åŸŽãèªåçã«åŠç¿ããããšãã§ããæåã®ç¹åŸŽãšã³ãžãã¢ãªã³ã°ã®å¿ èŠæ§ãæé€ããŸããããã«ãããããã©ãŒãã³ã¹ãåçã«åäžããè€éã§å€æ§ãªèŠèŠããŒã¿ãåŠçã§ããããã«ãªããŸããã
深局åŠç¿ã®ç©äœæ€åºã¢ã«ãŽãªãºã ã¯ã倧ãã2ã€ã®äž»èŠãªã¿ã€ãã«åé¡ã§ããŸãã
- 2æ®µéæ€åºåšïŒãããã®ã¢ã«ãŽãªãºã ã¯ãéåžžã2ã€ã®æ®µéã§æ§æãããŸããæåã«ãé åææ¡ïŒæœåšçãªç©äœã®äœçœ®ïŒãçæããæ¬¡ã«ãããã®ææ¡ãåé¡ããã³çµã蟌ã¿ãŸããå€ãã®å Žåãé«ã粟床ãéæããŸãããé床ãé ããªãå¯èœæ§ããããŸãã
- 1æ®µéæ€åºåšïŒãããã®ã¢ã«ãŽãªãºã ã¯ãç©äœã®åé¡ãšå¢çããã¯ã¹ã®ååž°ã1åã®ãã¹ã§å®è¡ãããããé«éã§ããã2æ®µéæ€åºåšã»ã©æ£ç¢ºã§ãªãå ŽåããããŸãã
2段éç©äœæ€åºã¢ã«ãŽãªãºã
2æ®µéæ€åºåšã¯ããã®2段éããã»ã¹ã«ãã£ãŠç¹åŸŽä»ããããŸããæåã«ãç©äœãååšããå¯èœæ§ãé«ãé¢å¿é åïŒROIïŒãææ¡ããæ¬¡ã«ãããã®é åãåé¡ããå¢çããã¯ã¹ãçµã蟌ã¿ãŸããæ³šç®ãã¹ãäŸãšããŠã¯ã次ã®ãã®ããããŸãã
R-CNNïŒé åããŒã¹ã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒ
R-CNNã¯ãç©äœæ€åºã«CNNã䜿çšãããšããæŠå¿µãå°å ¥ããç»æçãªã¢ã«ãŽãªãºã ã§ããããã®åäœã¯æ¬¡ã®ãšããã§ãã
- é åææ¡ïŒã¢ã«ãŽãªãºã ã¯æåã«ãéžæçæ€çŽ¢ã¢ã«ãŽãªãºã ã䜿çšããŠãäžé£ã®é åææ¡ãã€ãŸãç©äœãååšããå¯èœæ§ã®ããæœåšçãªå¢çããã¯ã¹ãçæããŸãã
- ç¹åŸŽæœåºïŒåé åææ¡ã¯åºå®ãµã€ãºã«å€åœ¢ãããCNNã«äŸçµŠãããŠç¹åŸŽãã¯ãã«ãæœåºãããŸãã
- åé¡ãšå¢çããã¯ã¹ã®ååž°ïŒæœåºãããç¹åŸŽãã¯ãã«ã䜿çšããŠãåé åå ã®ç©äœãåé¡ããå¢çããã¯ã¹ã®åº§æšãçµã蟌ã¿ãŸãã
R-CNNã¯ç®èŠãŸããçµæãéæããŸããããèšç®ã³ã¹ããé«ããç¹ã«é åææ¡ã®æ®µéã§ãæšè«æéãé ããªããŸããã
Fast R-CNN
Fast R-CNNã¯ãç³ã¿èŸŒã¿èšç®ãå ±æããããšã§R-CNNãæ¹åããŸãããç»åå šäœããç¹åŸŽããããæœåºããé¢å¿é åïŒRoIïŒããŒãªã³ã°ã¬ã€ã€ãŒã䜿çšããŠãåé åææ¡ã«å¯ŸããŠåºå®ãµã€ãºã®ç¹åŸŽããããæœåºããŸãããã®å ±æèšç®ã«ãããããã»ã¹ãå€§å¹ ã«é«éåãããŸãããã ããé åææ¡ã®æ®µéã¯äŸç¶ãšããŠããã«ããã¯ã§ããã
Faster R-CNN
Faster R-CNNã¯ãé åææ¡ãããã¯ãŒã¯ïŒRPNïŒãçµã¿èŸŒãããšã§ãé åææ¡ã®ããã«ããã¯ã«å¯ŸåŠããŸãããRPNã¯ãç¹åŸŽãããããçŽæ¥é åææ¡ãçæããCNNã§ãããéžæçæ€çŽ¢ã®ãããªå€éšã¢ã«ãŽãªãºã ã®å¿ èŠæ§ãæé€ããŸããããã«ãããé床ãšç²ŸåºŠã®äž¡æ¹ãå€§å¹ ã«åäžããŸãããFaster R-CNNã¯éåžžã«åœ±é¿åã®ããã¢ãŒããã¯ãã£ã«ãªããçŸåšã§ãåºã䜿çšãããŠããŸãã
äŸïŒFaster R-CNNã¯ãäžå¯©ãªæŽ»åãæ€åºããããã®ç£èŠã·ã¹ãã ããè «çãç¹å®ããããã®å»çç»åãªã©ãããŸããŸãªã¢ããªã±ãŒã·ã§ã³ã§åºã䜿çšãããŠããŸãã
1段éç©äœæ€åºã¢ã«ãŽãªãºã
1æ®µéæ€åºåšã¯ãç©äœã®ã¯ã©ã¹ãšå¢çããã¯ã¹ã1åã®ãã¹ã§çŽæ¥äºæž¬ããããšã«ããã2æ®µéæ€åºåšãããé«éãªä»£æ¿ææ®µãæäŸããŸããéåžžãã°ãªããããŒã¹ã®ã¢ãããŒããŸãã¯ã¢ã³ã«ãŒããã¯ã¹ã䜿çšããŠãç©äœã®äœçœ®ãäºæž¬ããŸããæ³šç®ãã¹ãäŸãšããŠã¯ã次ã®ãã®ããããŸãã
YOLOïŒYou Only Look OnceïŒ
YOLOã¯ããã®é床ã§ç¥ããããªã¢ã«ã¿ã€ã ã®ç©äœæ€åºã¢ã«ãŽãªãºã ã§ããå ¥åç»åãã°ãªããã«åå²ããåã°ãªããã»ã«ã«å¯ŸããŠå¢çããã¯ã¹ãšã¯ã©ã¹ç¢ºçãäºæž¬ããŸããYOLOã¯ãç»åå šäœã1åã®ãã¹ã§åŠçããããé«éã§ãããã ããç¹ã«å°ããªç©äœãäºãã«è¿ãç©äœãåŠçããå Žåã2æ®µéæ€åºåšã»ã©æ£ç¢ºã§ã¯ãªãå ŽåããããŸããYOLOã®ããã€ãã®ããŒãžã§ã³ãéçºãããŠãããããããã以åã®ããŒãžã§ã³ãæ¹åããŠããŸãã
YOLOã®ä»çµã¿ïŒ
- ã°ãªããåå²ïŒç»åã¯S x Sã°ãªããã«åå²ãããŸãã
- ã»ã«ããšã®äºæž¬ïŒåã°ãªããã»ã«ã¯ãBåã®å¢çããã¯ã¹ãåããã¯ã¹ã®ä¿¡é ŒåºŠã¹ã³ã¢ïŒããã¯ã¹ã«ç©äœãå«ãŸããŠãããšãã確信床ïŒãããã³ã¯ã©ã¹ç¢ºçïŒç©äœã®çš®é¡ïŒãäºæž¬ããŸãã
- Non-Maximum SuppressionïŒNMSïŒïŒNMSã¯ãåé·ãªå¢çããã¯ã¹ãæé€ããããã«äœ¿çšãããŸãã
äŸïŒYOLOã¯ãã©ã€ããããªã¹ããªãŒã ã§ã®ç©äœæ€åºã«é床ãäžå¯æ¬ ãªèªåé転ãªã©ã®ãªã¢ã«ã¿ã€ã ã¢ããªã±ãŒã·ã§ã³ã«é©ããŠããŸããããã¯ãå°å£²æ¥ã§ã®èªåãã§ãã¯ã¢ãŠããåšåº«ç®¡çã«ã䜿çšãããŸãã
SSDïŒSingle Shot MultiBox DetectorïŒ
SSDã¯ãYOLOã®éåºŠãšæ¹åããã粟床ãçµã¿åãããå¥ã®ãªã¢ã«ã¿ã€ã ã®ç©äœæ€åºã¢ã«ãŽãªãºã ã§ããããŸããŸãªãµã€ãºã®ç©äœãæ€åºããããã«ãç°ãªãã¹ã±ãŒã«ã®è€æ°ã®ç¹åŸŽãããã䜿çšããŸããSSDã¯ãè€æ°ã®ç¹åŸŽãããã¹ã±ãŒã«ã§ç°ãªãã¢ã¹ãã¯ãæ¯ã®ããã©ã«ãã®å¢çããã¯ã¹ãçæããããšã«ãããé«ã粟床ãå®çŸããŸããããã«ãããããŸããŸãªãµã€ãºãšåœ¢ç¶ã®ç©äœãããé©åã«æ€åºã§ããŸããSSDã¯ãå€ãã®2æ®µéæ€åºåšãããé«éã§ãããé床ãšç²ŸåºŠã®äž¡æ¹ãéèŠãªã¢ããªã±ãŒã·ã§ã³ã«æé©ã§ãã
SSDã®äž»ãªç¹åŸŽïŒ
- è€æ°ã®ç¹åŸŽãããïŒSSDã¯ãããŸããŸãªãµã€ãºã®ç©äœãæ€åºããããã«ãç°ãªãã¹ã±ãŒã«ã®è€æ°ã®ç¹åŸŽãããã䜿çšããŸãã
- ããã©ã«ãããã¯ã¹ïŒããŸããŸãªãµã€ãºã®ç©äœããã£ããã£ããããã«ãç°ãªãã¢ã¹ãã¯ãæ¯ã®ããã©ã«ãã®å¢çããã¯ã¹ïŒã¢ã³ã«ãŒããã¯ã¹ïŒã䜿çšããŸãã
- ç³ã¿èŸŒã¿ã¬ã€ã€ãŒïŒSSDã¯ãåé¡ãšå¢çããã¯ã¹ã®ååž°ã®äž¡æ¹ã«ç³ã¿èŸŒã¿ã¬ã€ã€ãŒãå©çšããŸãã
äŸïŒSSDã¯ãå°å£²ç°å¢ã§é¡§å®¢ã®è¡åãåæããåãã远跡ããã«ã¡ã©ã䜿çšããŠåšåº«ã管çããããã«äœ¿çšã§ããŸãã
é©åãªã¢ã«ãŽãªãºã ã®éžæ
ç©äœæ€åºã¢ã«ãŽãªãºã ã®éžæã¯ãç¹å®ã®ã¢ããªã±ãŒã·ã§ã³ãšã粟床ãé床ãèšç®ãªãœãŒã¹ã®ãã¬ãŒããªãã«ãã£ãŠç°ãªããŸããäžè¬çãªã¬ã€ãã©ã€ã³ã次ã«ç€ºããŸãã
- 粟床ãæéèŠïŒç²ŸåºŠãæãéèŠãªèŠçŽ ã§ããå Žåã¯ãFaster R-CNNããã®ä»ã®ããé«åºŠãª2æ®µéæ€åºåšã®äœ¿çšãæ€èšããŠãã ããã
- ãªã¢ã«ã¿ã€ã ããã©ãŒãã³ã¹ãéèŠïŒèªåé転ãããããå·¥åŠãªã©ããªã¢ã«ã¿ã€ã åŠçãå¿ èŠãªã¢ããªã±ãŒã·ã§ã³ã§ã¯ãYOLOãŸãã¯SSDãåªããéžæè¢ã§ãã
- èšç®ãªãœãŒã¹ãéãããŠããïŒã¢ã«ãŽãªãºã ãéžæããéã¯ãå©çšå¯èœãªåŠçèœåãšã¡ã¢ãªãèæ ®ããŠãã ãããäžéšã®ã¢ã«ãŽãªãºã ã¯ãä»ã®ã¢ã«ãŽãªãºã ãããèšç®ã³ã¹ããé«ããªããŸããã¹ããŒããã©ã³ãçµã¿èŸŒã¿ã·ã¹ãã ãªã©ã®ãšããžããã€ã¹ã§ã¯ããã軜éãªã¢ã«ãŽãªãºã ãæãŸããå ŽåããããŸãã
ç©äœæ€åºã«é¢ããéèŠãªèæ ®äºé
ã¢ã«ãŽãªãºã ã®éžæã«å ããŠãããã€ãã®èŠçŽ ãç©äœæ€åºã®æåã«äžå¯æ¬ ã§ãã
- ããŒã¿ã»ããã®å質ïŒãã¬ãŒãã³ã°ããŒã¿ã»ããã®å質ãšãµã€ãºã¯éèŠã§ããæ£ç¢ºãªã¢ãã«ããã¬ãŒãã³ã°ããã«ã¯ãé©åã«ã©ãã«ä»ããããã倿§ã§ä»£è¡šçãªããŒã¿ã»ãããäžå¯æ¬ ã§ããããã¯ãäžå ¬å¹³ãŸãã¯äžæ£ç¢ºãªäºæž¬ã«ã€ãªããå¯èœæ§ã®ãããã€ã¢ã¹ã«å¯ŸåŠããããã«ç¹ã«éèŠã§ãã
- ããŒã¿æ¡åŒµïŒã©ã³ãã ãªããªãã³ã°ãå転ãã¹ã±ãŒãªã³ã°ãªã©ã®ããŒã¿æ¡åŒµææ³ã¯ããã¬ãŒãã³ã°ããŒã¿ã®å€æ§æ§ãé«ããããšã«ãããã¢ãã«ã®ããã¹ãæ§ãšäžè¬åãåäžãããããšãã§ããŸãã
- ããŒããŠã§ã¢ãšãœãããŠã§ã¢ïŒããŒããŠã§ã¢ïŒGPUãªã©ïŒãšãœãããŠã§ã¢ã©ã€ãã©ãªïŒTensorFlowãPyTorchãOpenCVãªã©ïŒã®éžæã¯ãããã©ãŒãã³ã¹ã«å€§ããªåœ±é¿ãäžããå¯èœæ§ããããŸãã
- ãã¬ãŒãã³ã°ãšãã€ããŒãã©ã¡ãŒã¿ã®èª¿æŽïŒãã€ããŒãã©ã¡ãŒã¿ïŒåŠç¿çãããããµã€ãºãªã©ïŒãæ éã«éžæããååãªãšããã¯æ°ã§ãã¬ãŒãã³ã°ããããšã¯ãã¢ãã«ã®ããã©ãŒãã³ã¹ã«ãšã£ãŠéèŠã§ãã
- è©äŸ¡ææšïŒç²ŸåºŠãåçŸçãå¹³å粟床ïŒAPïŒãIntersection over UnionïŒIoUïŒãªã©ã®é©åãªè©äŸ¡ææšãçè§£ããŠäœ¿çšããããšã¯ãã¢ãã«ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããããã«äžå¯æ¬ ã§ãã
- çŸå®äžçã®æ¡ä»¶ïŒç §æããªã¯ã«ãŒãžã§ã³ãç©äœã®å¯å€æ§ãªã©ãã¢ãã«ãééããçŸå®äžçã®æ¡ä»¶ãèæ ®ããŠãã ãããã¢ãã«ã¯ãå®çšçãªäœ¿çšã®ããã«ããŸããŸãªæ¡ä»¶ã«ããŸãäžè¬åããå¿ èŠããããŸãã
ç©äœæ€åºã®å¿çš
ç©äœæ€åºã¯ãããŸããŸãªæ¥çã§å¹ åºãå¿çšããããŸãã
- èªåé転è»ïŒæ©è¡è ãè»äž¡ãäº€éæšèãããã³ãã®ä»ã®é害ç©ãèå¥ããŸãã
- ããããå·¥åŠïŒãããããç°å¢ãèªèãã察話ã§ããããã«ããŸãã
- ã»ãã¥ãªãã£ãšç£èŠïŒäžå¯©ãªæŽ»åã®æ€åºãäŸµå ¥è ã®èå¥ãããã³å ¬å ±ã¹ããŒã¹ã®ç£èŠãããã¯ãç±³åœã®èŠå¯çœ²ãããšãŒããããã¢ãžã¢ã®æ²»å®éšéãŸã§ãäžçäžã®æ²»å®éšéãæ³å·è¡æ©é¢ã«ãšã£ãŠç¹ã«åœ¹ç«ã¡ãŸãã
- å°å£²ïŒé¡§å®¢ã®è¡åã®åæãåãã®è¿œè·¡ãããã³ãã§ãã¯ã¢ãŠãããã»ã¹ã®èªååã
- å»çç»åïŒå»çç»åã®ç°åžžãæ€åºããããšã«ãããçŸæ£ã®èšºæãæ¯æŽããŸããããã«ã¯ãXç·ãMRIãCTã¹ãã£ã³ã®åæãå«ãŸããè±åœããã€ã³ãããããŠãã以éãŸã§ãäžçäžã®ç é¢ã§æ¡çšãããŠããæè¡ã§ãã
- 蟲æ¥ïŒäœç©ã®ç£èŠã害è«ã®æ€åºãããã³åç©«ã®èªååã
- 補é ïŒå質管çãæ¬ 饿€åºãããã³çç£ã©ã€ã³ã®èªååã
- ã¹ããŒãåæïŒéžæã®è¿œè·¡ãã²ãŒã ã€ãã³ãã®åæãããã³æŽå¯ã®æäŸã
- é¡èªèãšçäœèªèšŒïŒå人ã®èå¥ãšIDã®æ€èšŒã
äŸïŒèŸ²æ¥ã®åéã§ã¯ãæ¥æ¬ã®èŸ²å Žã§ç©äœæ€åºã䜿çšããŠãäœç©ã®æé·ãšå¥åº·ç¶æ ãç£èŠããŠããŸãããã®ããŒã¿ã«ããã蟲家ã¯çæŒãšæœè¥ã®ã¹ã±ãžã¥ãŒã«ãæé©åã§ããŸãããªã©ã³ãã§ã¯ãäž»èŠãªè±åžå Žã§è²©å£²ãããè±ã®ãµã€ãºãšå¥åº·ç¶æ ãè©äŸ¡ããããã«äœ¿çšãããŠããŸãã
ç©äœæ€åºã®æªæ¥
ç©äœæ€åºã¯æ¥éã«é²åããŠããåéã§ããããã€ãã®äž»èŠãªãã¬ã³ããšå°æ¥ã®æ¹åæ§ã«ã¯ã次ã®ãã®ããããŸãã
- 粟床ãšå¹çã®åäžïŒç ç©¶è ã¯ã粟床ãåäžãããèšç®ã³ã¹ããåæžããããã«ãåžžã«æ°ããã¢ã«ãŽãªãºã ãšæè¡ãéçºããŠããŸãã
- 3Dç©äœæ€åºïŒèªåé転ãããããå·¥åŠãªã©ã®ã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠéèŠãª3D空éã§ã®ç©äœã®æ€åºã
- ãããªç©äœæ€åºïŒãããªã·ãŒã±ã³ã¹å ã®ç©äœãæ£ç¢ºã«æ€åºã§ããã¢ã«ãŽãªãºã ã®éçºã
- Few-shotããã³Zero-shotåŠç¿ïŒã©ãã«ä»ãããŒã¿ãéãããŠããããŸãã¯ãŸã£ãããªãç¶æ ã§ç©äœãæ€åºããããã®ã¢ãã«ã®ãã¬ãŒãã³ã°ã
- 説æå¯èœãªAIïŒXAIïŒïŒç©äœæ€åºã¢ãã«ã®è§£éå¯èœæ§ãé«ããŠãæææ±ºå®ããã»ã¹ãçè§£ããŸããããã¯ãå»ç蚺æãæ³çæç¶ããªã©ãéææ§ãšèª¬æè²¬ä»»ãéèŠãªã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠç¹ã«éèŠã§ãã
- ãã¡ã€ã³é©å¿ïŒæå°éã®åãã¬ãŒãã³ã°ã§æ°ããç°å¢ãããŒã¿ã»ããã«é©å¿ã§ããã¢ãã«ã®éçºãããã¯ã倿§ãªçŸå®äžçã®ã·ããªãªã§ã¢ãã«ããããã€ããããã«éèŠã§ãã
- ãšããžã³ã³ãã¥ãŒãã£ã³ã°ïŒãšããžããã€ã¹ïŒã¹ããŒããã©ã³ããããŒã³ãªã©ïŒã«ç©äœæ€åºã¢ãã«ããããã€ããŠãäœé å»¶ã§ãªã¢ã«ã¿ã€ã åŠçãå¯èœã«ããŸãã
ã°ããŒãã«ç£æ¥ãžã®åœ±é¿ïŒã³ã³ãã¥ãŒã¿ããžã§ã³ãšç©äœæ€åºã®åœ±é¿ã¯ã倿§ãªã°ããŒãã«ç£æ¥ã«åãã§ããŸããããšãã°ãå»ºèšæ¥çã§ã¯ã建èšãããžã§ã¯ãã®é²æç¶æ³ãç£èŠããã®ã«åœ¹ç«ã¡ãŸãããããŒã³ãšã«ã¡ã©ã䜿çšããŠå»ºèšçŸå Žã®ãªã¹ã¯ãç¹å®ããããšã«ãããå®å šæ§ã確ä¿ããŸããããã¯ãäžçäžã®äž»èŠéœåžã§ã®ãããžã§ã¯ããªã©ãè€éãªãããžã§ã¯ãã§ç¹ã«äŸ¡å€ããããŸãã
çµè«
ç©äœæ€åºã¯ãäžçäžã®ããŸããŸãªæ¥çã«é©åœããããããŠãã匷åã§æ±çšæ§ã®é«ãæè¡ã§ããèªåé転ããå»çç»åãã»ãã¥ãªãã£ãŸã§ãã¢ããªã±ãŒã·ã§ã³ã¯åºå€§ã§æ¡å€§ããŠããŸããæ·±å±€åŠç¿ãé²åãç¶ããã«ã€ããŠãããã«æŽç·Žãããå¹ççãªç©äœæ€åºã¢ã«ãŽãªãºã ãç»å Žããç§ãã¡ãåšå²ã®äžçãšã©ã®ããã«å¯Ÿè©±ããçè§£ããããããã«å€é©ããããšãæåŸ ã§ããŸããããã¯ãã€ãããŒã·ã§ã³ãšç€ŸäŒãžã®åœ±é¿ã®å€§ããªå¯èœæ§ãç§ããæ¥éã«é²åããŠããåéã§ãã
ç©äœæ€åºã®äœ¿çšã¯ãäžçäžã®ããŸããŸãªã»ã¯ã¿ãŒãå€é©ããŠããŸããããšãã°ããã¡ãã·ã§ã³æ¥çã§ã¯ãç©äœæ€åºã¢ã«ãŽãªãºã ã䜿çšããŠãã¡ãã·ã§ã³ãã¬ã³ããç¹å®ããè¡£æåã®ã¹ã¿ã€ã«ãåæããŸããããã¯ãããªã®å°å£²åºãããã©ãžã«ã®ãªã³ã©ã€ã³ã·ã§ãããŸã§ãè¡£æåã®çç£ãšããŒã±ãã£ã³ã°ã«åœ±é¿ãäžããŸãã
ç©äœæ€åºã¯ãããŸããŸãªæåãçµæžã«ãããã¢ããªã±ãŒã·ã§ã³ã«åŒ·åãªæ©èœãæäŸããŸããç©äœæ€åºã¢ã«ãŽãªãºã ã®åºæ¬ååãšå®çšçãªå¿çšãçè§£ããããšã§ãæ°ããå¯èœæ§ãè§£ãæŸã¡ãäžçäžã®å€æ§ãªåéã«ãããè€éãªèª²é¡ã«å¯ŸåŠã§ããŸãã