仿¥ã®æ¥éã«é²åããã°ããŒãã«ãªäººæåžå Žã§ããã£ãªã¢ã¢ããã«äžå¯æ¬ ãªAIã¹ãã«ãç¿åŸããããã®å æ¬çãªã¬ã€ãã§ããäž»èŠãªAIã¹ãã«ãç¹å®ããåŠç¿ãªãœãŒã¹ãèŠã€ããç¥èãå¿çšããæ¹æ³ãåŠã³ãŸãããã
ãã£ãªã¢ã¢ããã®ããã®AIã¹ãã«æ§ç¯ïŒã°ããŒãã«ã¬ã€ã
人工ç¥èœïŒAIïŒã¯ãäžçäžã®ç£æ¥ãæ¥éã«å€é©ããå°éå®¶ã«ãšã£ãŠèª²é¡ãšåæã«åäŸã®ãªãæ©äŒãåµåºããŠããŸããAIã¹ãã«ãç¿åŸããããšã¯ããã¯ãæè¡å°éå®¶ã®ããã ãã®ãã®ã§ã¯ãããŸããã倿§ãªåéã§ãã£ãªã¢ã¢ããã«äžå¯æ¬ ãªãã®ãšãªãã€ã€ãããŸãããã®ã¬ã€ãã¯ãé²åããã°ããŒãã«ãªäººæåžå Žã§æåããããã«å¿ èŠãªAIã¹ãã«ãæ§ç¯ããããã®å æ¬çãªããŒãããããæäŸããŸãã
ãã£ãªã¢ã«ãããŠAIã¹ãã«ãéèŠãªçç±
AIå°éå®¶ã®éèŠã¯æ¥å¢ããŠããŸãããAIã®åœ±é¿ã¯åŸæ¥ã®æè¡è·ãã¯ããã«è¶ ããŠåºãã£ãŠããŸããAIã¯ãå»çãéèãããŒã±ãã£ã³ã°ã補é ãæè²ãªã©ãããŸããŸãªåéã«çµ±åãããŠããŸããAIã®ç¥èãæã€å人ã¯ã次ã®ããšãå¯èœã§ãã
- åçã®æœåšèœåãé«ããïŒAIé¢é£ã®åœ¹å²ã¯ãå°éçãªã¹ãã«ã»ããã®ãããå€ãã®å Žåé«çµŠã䌎ããŸãã
- ãã£ãªã¢ã®èŠéããåäžãããïŒäŒæ¥ã¯ãAIãæŽ»çšããŠå¹çãæ¹åããã€ãããŒã·ã§ã³ãæšé²ããè€éãªåé¡ã解決ã§ãã人æãç©æ¥µçã«æ±ããŠããŸãã
- ãã£ãªã¢ã®å°æ¥æ§ã確ä¿ããïŒAIãããæ®åããã«ã€ããŠãAIã·ã¹ãã ãçè§£ããAIã·ã¹ãã ãæ±ããå°éå®¶ã®éèŠãé«ãŸããŸãã
- 驿°çãªãœãªã¥ãŒã·ã§ã³ã«è²¢ç®ããïŒAIã¯ãå°éå®¶ãäžççãªèª²é¡ã«å¯ŸåŠããæå 端ã®ãœãªã¥ãŒã·ã§ã³ãéçºããããšãå¯èœã«ããŸããäŸãã°ãAIã¯åå¥åå»çã®éçºããšãã«ã®ãŒæ¶è²»ã®æé©åãèŸ²æ¥æ £è¡ã®æ¹åã«å©çšãããŠããŸãã
äžå¯æ¬ ãªAIã¹ãã«ã®ç¹å®
å¿ èŠãªç¹å®ã®AIã¹ãã«ã¯ããã£ãªã¢ç®æšãšæ¥çã«ãã£ãŠç°ãªããŸããããããããã€ãã®åºæ¬çãªã¹ãã«ã¯ãããŸããŸãªé åã§äŸ¡å€ããããŸãããããã®äž»èŠãªé åãèæ ®ããŠãã ããã
1. åºç€ç¥è
- æ°åŠïŒç·åœ¢ä»£æ°ã埮ç©åãçµ±èšã確çã®ç¢ºããªçè§£ã¯ãAIã¢ã«ãŽãªãºã ãçè§£ããããã«äžå¯æ¬ ã§ãã
- ããã°ã©ãã³ã°ïŒPythonãRãJavaãªã©ã®ããã°ã©ãã³ã°èšèªã®ç¿çã¯ãAIã¢ãã«ãå®è£ ããããã«äžå¯æ¬ ã§ããPythonã¯ããã®è±å¯ãªã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯ã®ãããAIã®äž»èŠèšèªãšããŠåºãèããããŠããŸãã
- ããŒã¿æ§é ãšã¢ã«ãŽãªãºã ïŒããŒã¿æ§é ãšã¢ã«ãŽãªãºã ã®ç¥èã¯ãå€§èŠæš¡ãªããŒã¿ã»ãããå¹ççã«åŠçããã³åæããããã«å¿ èŠã§ãã
2. ã³ã¢AIã³ã³ã»ãã
- æ©æ¢°åŠç¿ïŒMLïŒïŒæåž«ããåŠç¿ãæåž«ãªãåŠç¿ã匷ååŠç¿ã®ååãçè§£ããããšã¯åºç€çã§ãã
- 深局åŠç¿ïŒDLïŒïŒãã¥ãŒã©ã«ãããã¯ãŒã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒRNNïŒã«ç²ŸéããŠããããšã¯ãç»åèªèãèªç¶èšèªåŠçãªã©ã®è€éãªã¿ã¹ã¯ã«åãçµãããã«äžå¯æ¬ ã§ãã
- èªç¶èšèªåŠçïŒNLPïŒïŒNLPã®ã¹ãã«ã¯ãããã¹ãããŒã¿ã®æäœããã£ãããããã®éçºãææ åæã®çè§£ã«åœ¹ç«ã¡ãŸãã
- ã³ã³ãã¥ãŒã¿ããžã§ã³ïŒã³ã³ãã¥ãŒã¿ããžã§ã³æè¡ã®ç¥èã¯ãç»ååé¡ãç©äœæ€åºãé¡èªèãªã©ã®ã¿ã¹ã¯ã«äžå¯æ¬ ã§ãã
- ãããã£ã¯ã¹ïŒãããããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ïŒROSïŒãšããããå¶åŸ¡ã¢ã«ãŽãªãºã ã®çè§£ã¯ããããã£ã¯ã¹ãšèªååã«èå³ããã人ã«ãšã£ãŠéèŠã§ãã
3. ããŒã¿ã¹ãã«
- ããŒã¿åæïŒããŒã¿ãåæãè§£éããèœåã¯ããã¿ãŒã³ãæŽå¯ããã¬ã³ããç¹å®ããããã«äžå¯æ¬ ã§ãã
- ããŒã¿å¯èŠåïŒããŒã¿ããã®æŽå¯ã广çã«äŒããèŠèŠåãäœæããããšã¯ãæææ±ºå®ã®ããã«äžå¯æ¬ ã§ããTableauãPower BIã®ãããªããŒã«ãåºã䜿çšãããŠããŸãã
- ããŒã¿ãšã³ãžãã¢ãªã³ã°ïŒããŒã¿ãã€ãã©ã€ã³ãããŒã¿ãŠã§ã¢ããŠãžã³ã°ãããŒã¿ã¬ããã³ã¹ã®çè§£ã¯ãAIã·ã¹ãã ãæ§ç¯ããã³ç¶æããããã«éèŠã§ãã
4. ãœããã¹ãã«
- åé¡è§£æ±ºïŒAIã®å°éå®¶ã«ã¯ãè€éãªèª²é¡ãç¹å®ãã察åŠããããã®åŒ·åãªåé¡è§£æ±ºèœåãå¿ èŠã§ãã
- æ¹å€çæèïŒæ å ±ãæ¹å€çã«è©äŸ¡ããæ å ±ã«åºã¥ããæææ±ºå®ãè¡ãèœåã¯äžå¯æ¬ ã§ãã
- ã³ãã¥ãã±ãŒã·ã§ã³ïŒéæè¡çãªèŽè¡ã«è€éãªAIã®æŠå¿µã説æããããã«ã¯ã广çãªã³ãã¥ãã±ãŒã·ã§ã³ã¹ãã«ãäžå¯æ¬ ã§ãã
- ã³ã©ãã¬ãŒã·ã§ã³ïŒAIãããžã§ã¯ãã¯å€æ§ãªããŒã ãšã®ã³ã©ãã¬ãŒã·ã§ã³ã䌎ãããšãå€ããããä»è ãšå¹æçã«ååããèœåãéèŠã§ãã
é©åãªåŠç¿ãªãœãŒã¹ãèŠã€ãã
AIã¹ãã«ãæ§ç¯ããã®ã«åœ¹ç«ã€å€æ°ã®ãªãœãŒã¹ããããŸããæ¬¡ã®ãªãã·ã§ã³ãæ€èšããŠãã ããã
1. ãªã³ã©ã€ã³ã³ãŒã¹
- CourseraïŒäžçäžã®ããã倧åŠãæ©é¢ãããå¹ åºãAIããã³æ©æ¢°åŠç¿ã³ãŒã¹ãæäŸããŠããŸããäŸãšããŠã¯ãã¢ã³ããªã¥ãŒã»ãšã³ã®æ©æ¢°åŠç¿ã³ãŒã¹ããæ·±å±€åŠç¿å°éè¬åº§ããããŸãã
- edXïŒããŒã¿ãµã€ãšã³ã¹ãAIãã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ãªã©ã®ãããã¯ãã«ããŒããäž»èŠå€§åŠã®ã³ãŒã¹ã«ã¢ã¯ã»ã¹ã§ããŸãã
- UdacityïŒæ©æ¢°åŠç¿ãšã³ãžãã¢ãªã³ã°ãããŒã¿ãµã€ãšã³ã¹ãªã©ãç¹å®ã®AIã¹ãã«ã«çŠç¹ãåœãŠããããã£ã°ãªãŒããã°ã©ã ãæäŸããŠããŸãã
- Fast.aiïŒæ·±å±€åŠç¿ã𿩿¢°åŠç¿ã®å®è·µçãªãã³ãºãªã³ã³ãŒã¹ãæäŸããŠããŸãã
- DataCampïŒPythonãRãSQLã®ã³ãŒã¹ã§ãããŒã¿ãµã€ãšã³ã¹ãšåæã¹ãã«ã«çŠç¹ãåœãŠãŠããŸãã
2. 倧åŠããã³å°éåŠæ ¡
- åŠäœããã°ã©ã ïŒã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ãããŒã¿ãµã€ãšã³ã¹ããŸãã¯é¢é£åéã®åŠå£«å·ãŸãã¯ä¿®å£«å·ã®ååŸãæ€èšããŠãã ãããäžçäžã®å€ãã®å€§åŠãå°éã®AIããã°ã©ã ãæäŸããŠããŸãã
- ããŒããã£ã³ãïŒéäžçãªããŒããã£ã³ãã¯ãAIããã³ããŒã¿ãµã€ãšã³ã¹ã®è¿ éãªåŠç¿äœéšãæäŸã§ããŸããããŒããã£ã³ããè©å€ãè¯ãããã£ãªã¢ç®æšãšäžèŽããŠããããšã確èªããŠãã ããã
- ãããã§ãã·ã§ãã«éçºã³ãŒã¹ïŒå€ãã®å€§åŠã§ã¯ãç¹å®ã®AIãããã¯ã«çŠç¹ãåœãŠãçæã³ãŒã¹ãã¯ãŒã¯ã·ã§ãããæäŸããŠããŸãã
3. æžç±ããã³åºçç©
- ãPythonã§ã¯ãããæ©æ¢°åŠç¿ âscikit-learn&Kerasã«ããéçºå®è·µã (Aurélien Géronè)ïŒå®è·µçãªäŸãå«ãæ©æ¢°åŠç¿ã®å æ¬çãªã¬ã€ãã
- ãæ·±å±€åŠç¿ïŒDeep LearningïŒã (Ian Goodfellow, Yoshua Bengio, Aaron Courvilleè)ïŒæ·±å±€åŠç¿ã®åºç€çãªæç§æžã
- ããã¿ãŒã³èªèãšæ©æ¢°åŠç¿ïŒPattern Recognition and Machine LearningïŒã (Christopher Bishopè)ïŒãã¿ãŒã³èªèãšæ©æ¢°åŠç¿ã®å€å žçãªæç§æžã
- åŠè¡ãžã£ãŒãã«ïŒJournal of Machine Learning ResearchãIEEE Transactions on Pattern Analysis and Machine Intelligenceãªã©ã®åºçç©ãèªãã§ãææ°ã®AIç ç©¶ãåžžã«ææ¡ããŸãããã
4. ãªãŒãã³ãœãŒã¹ãããžã§ã¯ã
- TensorFlowïŒGoogleãéçºããåºã䜿çšãããŠãããªãŒãã³ãœãŒã¹ã®æ©æ¢°åŠç¿ãã¬ãŒã ã¯ãŒã¯ã
- PyTorchïŒFacebookãéçºãããªãŒãã³ãœãŒã¹ã®æ©æ¢°åŠç¿ãã¬ãŒã ã¯ãŒã¯ã
- Scikit-learnïŒæ©æ¢°åŠç¿ã®ããã®Pythonã©ã€ãã©ãªã
- KerasïŒPythonã§æžãããé«ã¬ãã«ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯APIã§ãTensorFlowãCNTKããŸãã¯Theanoäžã§å®è¡ã§ããŸãã
5. ã³ãã¥ããã£ãªãœãŒã¹
- ããŒãã¢ããããã³ã«ã³ãã¡ã¬ã³ã¹ïŒå°å ã®ããŒãã¢ãããæ¥çã«ã³ãã¡ã¬ã³ã¹ã«åå ããŠãä»ã®AIå°éå®¶ãšãããã¯ãŒã¯ãç¯ããææ°ã®ãã¬ã³ãã«ã€ããŠåŠã³ãŸãããã
- ãªã³ã©ã€ã³ãã©ãŒã©ã ïŒStack OverflowãReddit (r/MachineLearning) ãªã©ã®ãªã³ã©ã€ã³ãã©ãŒã©ã ã«åå ããŠã質åãããç¥èãå ±æãããããŸãããã
- KaggleïŒæ©æ¢°åŠç¿ã³ã³ããã£ã·ã§ã³ã«åå ããä»ã®ããŒã¿ãµã€ãšã³ãã£ã¹ããšå ±åäœæ¥ããããã®ãã©ãããã©ãŒã ã
åŠç¿èšç»ã®äœæ
AIã¹ãã«æ§ç¯ã®ç®æšãéæããã«ã¯ãæ§é åãããåŠç¿èšç»ãäžå¯æ¬ ã§ããæ¬¡ã®æé ãæ€èšããŠãã ããã
- ç®æšãå®çŸ©ããïŒAIã¹ãã«ã§äœãéæãããããæ±ºå®ããŸãããã£ãªã¢ã®è»¢æãçŸåšã®åœ¹å²ã®åŒ·åãæ°ãã補åããµãŒãã¹ã®éçºãªã©ãç®æããŠããŸããïŒ
- çŸåšã®ã¹ãã«ãè©äŸ¡ããïŒæ°åŠãããã°ã©ãã³ã°ãããŒã¿ãµã€ãšã³ã¹ã«ãããèªåã®åŒ·ã¿ãšåŒ±ã¿ãç¹å®ããŸãã
- é¢é£ãããªãœãŒã¹ãéžæããïŒç®æšãšã¹ãã«ã¬ãã«ã«åã£ãã³ãŒã¹ãæžç±ããããžã§ã¯ããéžæããŸãã
- çŸå®çãªæéãèšå®ããïŒåŠç¿èšç»ã管çããããåºåãã«åå²ããå ·äœçãªæéãèšå®ããŸãã
- äžè²«ããŠç·Žç¿ããïŒæ¯æ¥ãŸãã¯æ¯é±ãAIã¹ãã«ã®ç·Žç¿ã«æéãå²ããŸãã
- ãããžã§ã¯ããæ§ç¯ããïŒå®äžçã®ãããžã§ã¯ãã«åãçµãããšã§ãç¥èãå¿çšããŸããããã«ãããçè§£ãæ·±ããã¹ãã«ãæ«é²ããããã®ããŒããã©ãªãªãæ§ç¯ã§ããŸãã
- ãã£ãŒãããã¯ãæ±ããïŒã¡ã³ã¿ãŒãååããŸãã¯ãªã³ã©ã€ã³ã³ãã¥ããã£ãããã£ãŒãããã¯ãæ±ããæ¹åç¹ãèŠã€ããŸãã
ããŒããã©ãªãªã®æ§ç¯
匷åãªããŒããã©ãªãªã¯ãæœåšçãªéçšäž»ã«AIã¹ãã«ãå®èšŒããããã«äžå¯æ¬ ã§ãã以äžãå«ããããšãæ€èšããŠãã ããã
- å人ãããžã§ã¯ãïŒAIæè¡ãå¿çšããŠå®äžçã®èª²é¡ã解決ããèœåã瀺ããããžã§ã¯ãã玹ä»ããŸãã
- Kaggleã³ã³ããã£ã·ã§ã³ïŒKaggleã³ã³ããã£ã·ã§ã³ã«åå ããèªåã®ãœãªã¥ãŒã·ã§ã³ãããŒããã©ãªãªã§å ±æããŸãã
- ãªãŒãã³ãœãŒã¹ãžã®è²¢ç®ïŒãªãŒãã³ãœãŒã¹ã®AIãããžã§ã¯ãã«è²¢ç®ããŠãã³ãŒãã£ã³ã°ã¹ãã«ãšã³ã©ãã¬ãŒã·ã§ã³èœåãå®èšŒããŸãã
- ããã°æçš¿ãèšäºïŒAIãããžã§ã¯ããåŠç¿çµéšã«é¢ããããã°æçš¿ãèšäºãæžããŸãã
- GitHubãªããžããªïŒã³ãŒããGitHubã«ãã¹ãããå ¬éããŸãã
è·å Žã§AIã¹ãã«ãå¿çšãã
å¿ èŠãªAIã¹ãã«ãç¿åŸããããè·å Žã§ããŸããŸãªæ¹æ³ã§ããããå¿çšã§ããŸãã
- å埩çãªã¿ã¹ã¯ãèªååããïŒAIã䜿çšããŠãçŸåšæåã§è¡ãããŠããã¿ã¹ã¯ãèªååããããæŠç¥çãªäœæ¥ã«æéãè§£æŸããŸãã
- æææ±ºå®ãæ¹åããïŒAIãæŽ»çšããŠããŒã¿ãåæããæææ±ºå®ãæ¹åããããã®æŽå¯ãæäŸããŸãã
- 顧客äœéšãããŒãœãã©ã€ãºããïŒAIã䜿çšããŠã顧客ãšã®ã€ã³ã¿ã©ã¯ã·ã§ã³ãããŒãœãã©ã€ãºãã顧客æºè¶³åºŠãåäžãããŸãã
- æ°è£œåãšãµãŒãã¹ãéçºããïŒAIã䜿çšããŠãé²åãã顧客ã®ããŒãºãæºãã驿°çãªè£œåãšãµãŒãã¹ãéçºããŸãã
- ããã»ã¹ãæé©åããïŒAIã䜿çšããŠããã»ã¹ãæé©åããå¹çãåäžãããŸãã
åç£æ¥ã«ãããAIã¢ããªã±ãŒã·ã§ã³ã®äŸ
- ãã«ã¹ã±ã¢ïŒAIã¯ãçŸæ£èšºæãæ°è¬éçºãåå¥åå»çãããããæè¡ã«å©çšãããŠããŸãã
- éèïŒAIã¯ãäžæ£æ€åºããªã¹ã¯ç®¡çãã¢ã«ãŽãªãºã ååŒã顧客ãµãŒãã¹ã«å©çšãããŠããŸãã
- ããŒã±ãã£ã³ã°ïŒAIã¯ãããŒãœãã©ã€ãºãããåºåã顧客ã»ã°ã¡ã³ããŒã·ã§ã³ãææ åæã«å©çšãããŠããŸãã
- è£œé æ¥ïŒAIã¯ãäºç¥ä¿å šãå質管çãããããèªååã«å©çšãããŠããŸãã
- é茞ïŒAIã¯ãèªåé転è»ã亀é管çãããžã¹ãã£ã¯ã¹æé©åã«å©çšãããŠããŸãã
- æè²ïŒAIã¯ãåå¥åŠç¿ãèªåæ¡ç¹ãããŒãã£ã«å®¶åºæåž«ã«å©çšãããŠããŸãã
å«ççèæ ®äºé
AIã¹ãã«ãéçºãå¿çšããéã«ã¯ãAIã®å«çç嫿ãèæ ®ããããšãéèŠã§ããæ¬¡ã®ãããªåé¡ã«çæããŠãã ããã
- åèŠïŒAIã¢ã«ãŽãªãºã ã¯ãããŒã¿å ã®æ¢åã®åèŠãæ°žç¶ãããå¢å¹ ãããå¯èœæ§ããããŸããå ¬æ£ã§åãã®ãªãAIã·ã¹ãã ãéçºããããåªããŠãã ããã
- éææ§ïŒAIã·ã¹ãã ãéæã§èª¬æå¯èœã§ããããšã確èªããŠãã ããããŠãŒã¶ãŒã¯AIã·ã¹ãã ãã©ã®ããã«æææ±ºå®ãè¡ãããçè§£ãã¹ãã§ãã
- ãã©ã€ãã·ãŒïŒAIã䜿çšããŠããŒã¿ãåéããã³åæããéã«ã¯ãå人ã®ãã©ã€ãã·ãŒãä¿è·ããŠãã ããã
- 説æè²¬ä»»ïŒAIã·ã¹ãã ã«ãã£ãŠäžãããæ±ºå®ã«å¯Ÿããæç¢ºãªèª¬æè²¬ä»»ã®ç·ã確ç«ããŠãã ããã
AIã®æªæ¥ãšãã£ãªã¢æ©äŒ
AIã®åéã¯åžžã«é²åããŠãããæ°ããæè¡ãã¢ããªã±ãŒã·ã§ã³ã宿çã«ç»å ŽããŠããŸããæä»£ã®å ãè¡ãããã«ã¯ã次ã®ããšãéèŠã§ãã
- ç¶ç¶çã«åŠç¿ããïŒææ°ã®AIç ç©¶ãšãã¬ã³ããåžžã«ææ¡ããŸãããã
- ä»ã®å°éå®¶ãšãããã¯ãŒã¯ãç¯ãïŒä»ã®AIå°éå®¶ãšã€ãªãããç¥èãå ±æããäºãã«åŠã³ãŸãããã
- æ°ããæè¡ã詊ãïŒæ°ããAIæè¡ãããŒã«ãæ¢æ±ããŸãããã
- å€åã«é©å¿ããïŒAIãšäººæåžå Žã®å€åããç¶æ³ã«é©å¿ããæºåãããŠãã ããã
ä»äºã®æªæ¥ã¯AIãšå¯æ¥ã«çµã³ã€ããŠããŸããAIã¹ãã«ã«æè³ããããšã§ãæ¥éã«é²åããã°ããŒãã«ãªäººæåžå Žã§æåããããã®å°äœã確ç«ããäžççãªèª²é¡ã«å¯ŸåŠãã驿°çãªãœãªã¥ãŒã·ã§ã³ã®éçºã«è²¢ç®ã§ããŸãã
ã°ããŒãã«ãªäºäŸãšèæ ®äºé
AIã¹ãã«ãæ§ç¯ããAIé¢é£ã®ãã£ãªã¢ã远æ±ããéã«ã¯ããããã®ã°ããŒãã«ãªäºäŸãšèŠçŽ ãèæ ®ããŠãã ããã
- èªåŠã¹ãã«ïŒAIã®ç ç©¶éçºã§ã¯è±èªãäž»èŠèšèªã§ãããä»ã®èšèªã®ç¿çã¯ç¹å®ã®å°åã§ã®æ©äŒãéæããå¯èœæ§ããããŸããäŸãã°ããã³ããªã³èªã¯AIã®åéã§ãŸããŸãéèŠã«ãªã£ãŠããŸãã
- æåçãã¥ã¢ã³ã¹ïŒAIã¢ããªã±ãŒã·ã§ã³ã¯ãç°ãªãæåçèæ¯ã«é©å¿ãããå¿ èŠããããŸããäŸãã°ãé¡èªèã·ã¹ãã ã¯ãç°ãªãæ°æéã§ç²ŸåºŠã確ä¿ããããã«ã倿§ãªããŒã¿ã»ããã§èšç·Žãããå¿ èŠããããŸãã
- ããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒåœã«ãã£ãŠããŒã¿ãã©ã€ãã·ãŒèŠå¶ãç°ãªããŸããAIã·ã¹ãã ãéçºããã³å±éããéã«ã¯ããããã®èŠå¶ã«æ³šæããŠãã ãããäŸãã°ããšãŒãããã®äžè¬ããŒã¿ä¿è·èŠåïŒGDPRïŒã¯ãAIéçºã«é倧ãªåœ±é¿ãäžããŸãã
- åœéååïŒAIã®ç ç©¶éçºã¯ãäžçäžã®ç ç©¶è ãçµç¹ãé¢äžããå ±åäœæ¥ããŸããŸãå¢ããŠããŸããåœéçãªããŒãããŒãšã®ååã®æ©äŒãæ¢ããŸãããã
- ã°ããŒãã«AIå«çã€ãã·ã¢ããïŒPartnership on AIãIEEE Global Initiative on Ethics of Autonomous and Intelligent Systemsãªã©ãå«ççãªAIéçºãšå±éãä¿é²ããã°ããŒãã«ã€ãã·ã¢ããã«åå ããŸãããã
çµè«
AIã¹ãã«ãæ§ç¯ããããšã¯ãããªãã®æªæ¥ãžã®æè³ã§ããå¿ èŠãªç¥èãã¹ãã«ãçµéšãç¿åŸããããšã§ãæ°ãããã£ãªã¢æ©äŒãè§£ãæŸã¡ã驿°çãªãœãªã¥ãŒã·ã§ã³ã«è²¢ç®ããé²åããã°ããŒãã«ãªäººæåžå Žã§æåããããšãã§ããŸããææŠãåãå ¥ãã奜å¥å¿ãæã¡ç¶ããç¶ç¶çã«åŠã³ãAIæä»£ã«ãããŠè²Žéãªäººæã«ãªããŸãããã